
Partial optimality in Cubic Correlation Clustering

Silvia Di Gregorio
joint work with Bjoern Andres and David Stein

Faculty of Computer Science,
TU Dresden

May 22, 2023



Cubic Correlation Clustering

Let n ≥ 3, c ∈ R(
n
3)+(

n
2), S be the set containing all binary vectors

inducing a clustering.

min
∑

pqr∈(n
3)

cpqrxpqxprxqr +
∑

pq∈(n
2)

cpqxpq

s.t. x ∈ S.

• Example of nonlinear
combinatorial optimization
problem

• NP-hard to solve

Goal: computing a partial solution
to the problem efficiently
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Motivation: Correlation Clustering
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• Goal: given n points somehow
related, cluster them

• No prior knowledge of
optimal number of clusters
(Bansal et al. ’04)
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• Goal: given n points somehow
related, cluster them

• No prior knowledge of
optimal number of clusters
(Bansal et al. ’04)

• For any two points p, q, we
introduce binary variable xpq:

xpq = 1 ⇐⇒ p, q in same cluster



Motivation: Cubic objective
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Want to compare three points at the same time.
Applications (Levinkov et al. ’22):

• subspace clustering (affine lines in 2D or linear planes in 3D)
• scale-invariant recognition of symbols and rigid objects under

scaling, rotation, translations



Motivation: Partial optimality
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• Helpful in reducing size of the instance: then either exact
algorithm or heuristic

• Recent local search heuristics for several applications of
higher-order correlation clustering (Levinkov et al. ’17, ’22)

• Successful approach for linear objective functions (Alush,
Goldberger ’12; Lange et al. ’18, ’19)
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• Helpful in reducing size of the instance: then either exact
algorithm or heuristic

• Recent local search heuristics for several applications of
higher-order correlation clustering (Levinkov et al. ’17, ’22)

• Successful approach for linear objective functions (Alush,
Goldberger ’12; Lange et al. ’18, ’19)

• Fixing variables to 0 leads potentially to smaller instances (cut
condition)



Overview results

• In contrast to some usual approaches: we do not introduce
additional variables and we do not employ a LP (or convex)
relaxation (Adams et al. ’98)

• Generalize all partial optimality for linear objective function
and establish new conditions

• Total of 11 criteria: 3 cut, 8 join
• We can check all of them efficiently: either via an exact

algorithm or through a heuristic
• Tested on two datasets
• Obtained by combining appropriately improving maps

(Shekhovtsov ’13)
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Improving maps: Join
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Let x ∈ S, R ⊆ [n], the elementary join map σR is defined as

σR(x)pq :=






1 if pq ∈
(R

2
)

1 if ∀p′ ∈ {p, q} \ R ∃q′ ∈ R : xp′q′ = 1
xpq otherwise

R



Improving maps: Cut
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Let x ∈ S, R ⊆ [n], the elementary cut map σδ(R) is defined as

σδ(R)(x)pq :=

{
0 if pq ∈ δ(R)
xpq otherwise

R



First cut criterion
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Proposition
If there exists R ⊆ [n] such that

cpq ≥ 0 ∀pq ∈ δ(R)
cpqr ≥ 0 ∀pqr ∈ Tδ(R)

then there is an optimal solution x∗ such that x∗ij = 0 for all ij ∈ δ(R).

R

cpq ≥ 0
cpqr ≥ 0

• Can be tested exactly
by greedy algorithm

• Split instance in
independent smaller
instances



Second cut criterion
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Proposition
Let ij ∈

(n
2
)
. If there exists R ⊆ [n] with ij ∈ δ(R) and

c+ij ≥
∑

pqr∈Tδ(R)

c−pqr +
∑

pq∈δ(R)
c−pq,

then there is an optimal solution x∗ such that x∗ij = 0.

R

cpq ≥ 0
cpqr ≥ 0

cpq ≤ 0
cpqr ≤ 0

i
j

• Can be tested exactly
by reducing it to a min
st-cut problem

• Does not divide the
instance in
independent smaller
instances



Join criterion
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Proposition
If there exists R ⊆ [n] such that cpq ≤ 0, cpqr ≤ 0 inside of R, and

max
R′⊂R
R′ #=∅

{ ∑

pqr∈Tδ(R′)∩
(R

3
)

cpqr +
∑

pq∈δ(R′,R\R′)

cpq
}
≤

∑

pqr∈Tδ(R)∩T−

cpqr +
∑

pq∈δ(R)∩P−

cpq

then there is an optimal solution x∗ such that x∗ij = 1, for all ij ∈
(R

2
)
.

R

cpq ≥ 0
cpqr ≥ 0

cpq ≤ 0
cpqr ≤ 0

R′

• Can be tested with a
heuristic:
combination of a
greedy region
growing and min
st-cut problem

• Leads to one smaller
instance



Practical impact
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• Combine partial optimality criteria
in a recursive algorithm

• Start with join criteria

Goal: examine effectiveness empirically by computing percentage of
fixed optimal values
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Practical impact
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• Combine partial optimality criteria
in a recursive algorithm

• Start with join criteria

• Then move to cut criteria
• First the one that divides

instance in connected
components

• Lastly the remaining ones

Goal: examine effectiveness empirically by computing percentage of
fixed optimal values



Partition dataset: Description

• Instances defined with respect to a
partition into four sets

• α ∈ [0, 1]: similarity between intra-
and inter-clusters’ costs

• β ∈ [0, 1]: quantity of triples’ costs
relative to quantity of pairs’ costs
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Partition dataset: Results
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• 30 repetitions, number of points fixed to 48
• The percentage of fixed variables decreases with increasing α,

while β has no big effect
• α increases, runtime increases (< 1 minute)
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Triangles dataset: Description

• Geometric problem of finding
equilateral triangles in a noisy
point cloud

• We fix three equilateral triangles in
the plane

• For each vertex of a triangle, we
draw points around it from a
Gaussian distribution with standard
deviation σ
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Triangles dataset: Results
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• 30 repetitions, number of points fixed to 45
• The percentage of fixed variables decreases with increasing σ

• σ increases, runtime increases (< 40 seconds)
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Conclusions

• Generalized all partial optimality criteria for linear objectives
to the cubic setting, and developed new ones

• Devised exact or heuristic algorithms to test each condition
• Tested them on two datasets

Next steps:
• Currently working on a linearization approach and a

branch-and-cut algorithm: using partial optimality conditions
as a preprocessing

• Instances encoded by sparse (hyper)graphs
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Thanks for your attention!
Questions? email: silvia.di_gregorio@tu-dresden.de
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