Partial optimality in Cubic Correlation Clustering

Silvia Di Gregorio
joint work with Bjoern Andres and David Stein

Faculty of Computer Science, TU Dresden

May 22, 2023

Cubic Correlation Clustering

Let $n \geq 3, c \in \mathbb{R}^{\binom{n}{3}+\binom{n}{2}}$, S be the set containing all binary vectors inducing a clustering.

$$
\begin{array}{ll}
\min & \sum_{p q r \in\binom{n}{3}} c_{p q r} x_{p q} x_{p r} x_{q r}+\sum_{p q \in\binom{n}{2}} c_{p q} x_{p q} \\
\text { s.t. } & x \in S .
\end{array}
$$

Cubic Correlation Clustering

Let $n \geq 3, c \in \mathbb{R}^{\binom{n}{3}+\binom{n}{2}}$, S be the set containing all binary vectors inducing a clustering.

$$
\begin{array}{ll}
\min & \sum_{p q r \in\binom{n}{3}} c_{p q r} x_{p q} x_{p r} x_{q r}+\sum_{p q \in\binom{n}{2}} c_{p q} x_{p q} \\
\text { s.t. } & x \in S .
\end{array}
$$

- Example of nonlinear combinatorial optimization problem
- NP-hard to solve

Goal: computing a partial solution to the problem efficiently

Motivation: Correlation Clustering

- Goal: given n points somehow related, cluster them
- No prior knowledge of optimal number of clusters (Bansal et al. '04)

Motivation: Correlation Clustering

- Goal: given n points somehow related, cluster them
- No prior knowledge of optimal number of clusters (Bansal et al. '04)

Motivation: Correlation Clustering

- Goal: given n points somehow related, cluster them
- No prior knowledge of optimal number of clusters (Bansal et al. '04)

- For any two points p, q, we introduce binary variable $x_{p q}$:

$x_{p q}=1 \Longleftrightarrow p, q$ in same cluster

Motivation: Cubic objective

Want to compare three points at the same time.

Applications (Levinkov et al. '22):

- subspace clustering (affine lines in 2D or linear planes in 3D)
- scale-invariant recognition of symbols and rigid objects under scaling, rotation, translations

Motivation: Partial optimality

- Helpful in reducing size of the instance: then either exact algorithm or heuristic
- Recent local search heuristics for several applications of higher-order correlation clustering (Levinkov et al. '17, '22)
- Successful approach for linear objective functions (Alush, Goldberger '12; Lange et al. '18, '19)

Motivation: Partial optimality

- Helpful in reducing size of the instance: then either exact algorithm or heuristic
- Recent local search heuristics for several applications of higher-order correlation clustering (Levinkov et al. '17, '22)
- Successful approach for linear objective functions (Alush, Goldberger '12; Lange et al. '18, '19)
- Fixing variables to 1 leads to a smaller instance (join condition)

Motivation: Partial optimality

- Helpful in reducing size of the instance: then either exact algorithm or heuristic
- Recent local search heuristics for several applications of higher-order correlation clustering (Levinkov et al. '17, '22)
- Successful approach for linear objective functions (Alush, Goldberger '12; Lange et al. '18, '19)
- Fixing variables to 0 leads potentially to smaller instances (cut condition)

Overview results

- In contrast to some usual approaches: we do not introduce additional variables and we do not employ a LP (or convex) relaxation (Adams et al. '98)
- Generalize all partial optimality for linear objective function and establish new conditions
- Total of 11 criteria: 3 cut, 8 join
- We can check all of them efficiently: either via an exact algorithm or through a heuristic
- Tested on two datasets
- Obtained by combining appropriately improving maps (Shekhovtsov '13)

Improving maps: Join

Let $x \in S, R \subseteq[n]$, the elementary join map σ_{R} is defined as

$$
\sigma_{R}(x)_{p q}:= \begin{cases}1 & \text { if } p q \in\binom{R}{2} \\ 1 & \text { if } \forall p^{\prime} \in\{p, q\} \backslash R \exists q^{\prime} \in R: x_{p^{\prime} q^{\prime}}=1 \\ x_{p q} & \text { otherwise }\end{cases}
$$

Improving maps: Cut

Let $x \in S, R \subseteq[n]$, the elementary cut $\operatorname{map} \sigma_{\delta(R)}$ is defined as

$$
\sigma_{\delta(R)}(x)_{p q}:= \begin{cases}0 & \text { if } p q \in \delta(R) \\ x_{p q} & \text { otherwise }\end{cases}
$$

First cut criterion

Proposition

If there exists $R \subseteq[n]$ such that

$$
\begin{aligned}
c_{p q} \geq 0 & \forall p q \in \delta(R) \\
c_{p q r} \geq 0 & \forall p q r \in T_{\delta(R)}
\end{aligned}
$$

then there is an optimal solution x^{*} such that $x_{i j}^{*}=0$ for all $i j \in \delta(R)$.

- Can be tested exactly by greedy algorithm
- Split instance in independent smaller instances

$$
\begin{aligned}
& c_{p q} \geq 0 \\
& c_{p q r} \geq 0
\end{aligned}
$$

Second cut criterion

Proposition

Let $i j \in\binom{n}{2}$. If there exists $R \subseteq[n]$ with $i j \in \delta(R)$ and

$$
c_{i j}^{+} \geq \sum_{p q r \in T_{\delta(R)}} c_{p q r}^{-}+\sum_{p q \in \delta(R)} c_{p q}^{-},
$$

then there is an optimal solution x^{*} such that $x_{i j}^{*}=0$.

$$
\begin{array}{ll}
c_{p q} \geq 0 & c_{p q} \leq 0 \\
c_{p q r} \geq 0 & c_{p q r} \leq 0
\end{array}
$$

- Can be tested exactly by reducing it to a min st-cut problem
- Does not divide the instance in independent smaller instances

Join criterion

Proposition

If there exists $R \subseteq[n]$ such that $c_{p q} \leq 0, c_{p q r} \leq 0$ inside of R, and

$$
\max _{\substack{R^{\prime} \subset R \\ R^{\prime} \neq \emptyset}}\left\{\sum_{p q r \in T_{\delta\left(R^{\prime}\right)} \cap\binom{R}{3}} c_{p q r}+\sum_{p q \in \delta\left(R^{\prime}, R \backslash R^{\prime}\right)} c_{p q}\right\} \leq \sum_{p q r \in T_{\delta(R)} \cap T^{-}} c_{p q r}+\sum_{p q \in \delta(R) \cap P^{-}} c_{p q}
$$

then there is an optimal solution x^{*} such that $x_{i j}^{*}=1$, for all $i j \in\binom{R}{2}$.

$$
\begin{array}{ll}
c_{p q} \geq 0 & c_{p q} \leq 0 \\
c_{p q r} \geq 0 & c_{p q r} \leq 0
\end{array}
$$

- Can be tested with a heuristic: combination of a greedy region growing and min st-cut problem
- Leads to one smaller instance

Practical impact

Goal: examine effectiveness empirically by computing percentage of fixed optimal values

- Combine partial optimality criteria in a recursive algorithm
- Start with join criteria

Practical impact

Goal: examine effectiveness empirically by computing percentage of fixed optimal values

- Combine partial optimality criteria in a recursive algorithm
- Start with join criteria
- Then move to cut criteria
- First the one that divides instance in connected components

Practical impact

Goal: examine effectiveness empirically by computing percentage of fixed optimal values

- Combine partial optimality criteria in a recursive algorithm
- Start with join criteria
- Then move to cut criteria
- First the one that divides instance in connected components
- Lastly the remaining ones

Partition dataset: Description

- Instances defined with respect to a partition into four sets
- $\alpha \in[0,1]$: similarity between intraand inter-clusters' costs
- $\beta \in[0,1]$: quantity of triples' costs relative to quantity of pairs' costs

Partition dataset: Results

- 30 repetitions, number of points fixed to 48
- The percentage of fixed variables decreases with increasing α, while β has no big effect
- α increases, runtime increases (<1 minute)

Triangles dataset: Description

- Geometric problem of finding equilateral triangles in a noisy point cloud
- We fix three equilateral triangles in the plane
- For each vertex of a triangle, we draw points around it from a Gaussian distribution with standard deviation σ

Triangles dataset: Results

Runtime / s

- 30 repetitions, number of points fixed to 45
- The percentage of fixed variables decreases with increasing σ
- σ increases, runtime increases (<40 seconds)

Conclusions

- Generalized all partial optimality criteria for linear objectives to the cubic setting, and developed new ones
- Devised exact or heuristic algorithms to test each condition
- Tested them on two datasets

Conclusions

- Generalized all partial optimality criteria for linear objectives to the cubic setting, and developed new ones
- Devised exact or heuristic algorithms to test each condition
- Tested them on two datasets

Next steps:

- Currently working on a linearization approach and a branch-and-cut algorithm: using partial optimality conditions as a preprocessing
- Instances encoded by sparse (hyper)graphs

Thanks for your attention!

Questions? email: silvia.di_gregorio@tu-dresden.de

