
Searching large neighborhoods for
integer linear programs with contrastive learning

Bistra Dilkina
Associate Professor of Computer Science

Co-Director of USC Center on AI in Society
University of Southern California

MIP Workshop
Apr 25, 2023

Constraint Reasoning and Optimization

100
 200

10K
50K

0.5M
1M

1M
5M

Variables

1030

10301,020

10150,500

1015,050

103010

W
or

st
 C

as
e

co
m

pl
ex

ity

Wind Farm Layout

Corridor Planning

Integrating renewables
in Power Grid

Multi-Agent
Systems

No. of atoms
on earth 1047

100 10K 20K 100K 1M

Decision making problems of larger size and new problem structure
drive the continued need to improve combinatorial solving methods

Problem Type
Integer ProgrammingGraph Optimization

Greedy Heuristic

Branching Heuristic Selection

Exact Solving for MILP

Infusing ML with Constrained Decision MakingInfusing Discrete Optimization
with Machine Learning

ClusterNET: Differentiable kmeans for
a class graph optimization problems

GCN node
embedding
s

K-means
clustering Locate 1 facility in

each community

Loss: quality of
facility
assignment

Differentiate
through K-means

Update GCN
params

Decision-focused learning for
submodular optimization and LP

Data Decisionsargmax
&∈(

) *, ,

Training: maximize decision quality

Augment discrete optimization
algorithms with learning components

Learning methods that incorporate the
combinatorial decisions they inform

ML Combinatorial Optimization
‣ Exciting and growing research area

MAPF

TB Health Visits Allocation

MIPaaL: MIP as a layer in
Neural Networks

LP Relaxation

MIP

Pseudo-Backdoor
samples
ℬ!
ℬ"
…
ℬ#

Scoring module
(GAT + Attention Pooling)

Classification module
Solve with ℬ∗ or gurobi?
(GAT + Attention Pooling)

ℬ∗

ℬ∗ or
Gurobi?

Solve with
Gurobi

using ℬ∗

Solve with
GurobiScore

Backdoors

LNS for MIP

Initialize

Destroy

Repair

10

1

2

1

2

High-level Constraint Tree

1

2

1

2

1

2

1

2

Add a constraint:
Agent 2 cannot be
at X at time step 1

Add a constraint:
Agent 1 cannot be
at X at time step 1

Conflict Selection in CBS

Node Selection in ECBS

LNS for MAPF

Wildlife Trafficking Routes
Features Predictions Solution

Edge
Accuracy

Shortest
Path

Logistic
Model

Objective

Distance
Arms Trafficking
Money Laundering

SurCO: MINLP solving using
Differentiable optimization

Searching Large Neighborhoods
for Integer Linear Programs
with Contrastive Learning

Taoan Huang, Aaron Ferber, Yuandong Tian, Bistra Dilkina, Benoit Steiner

(Meta AI, FAIR) (Meta AI, FAIR)(USC) (USC) (USC)

Mixed Integer Programs & their applications
Flexible mathematical program framework

min! 𝑐"𝑥 objective
s.t. 𝐴𝑥 ≤ 𝑏 constraints

𝑥# ∈ ℤ	∀𝑗 ∈ ℐ integrality

Energy Systems Conservation Planning Disaster Response and PlanningScientific Discovery

Large Neighborhood Search (LNS)

Initialize

Destroy

1. Find an initial solution via any method

Repair

2. Select a subset of 𝑘 variables 𝑋$ ⊂ 𝑋: 𝑋$ = 𝑘
and unassign them.

3. Reassign selected variables 𝑋!	while keeping all other
variable assignments frozen

Compared to other local search methods,
LNS explores a large neighborhood of possible next solutions in each step

LNS and its applications

• LNS for Constraint Programming
• Perron et al, 2004, 2006; Berthold er al, 2012

• LNS for Vehicle Routing Problems
• Ropke & Pisinger, 2006; Azi et al., 2014

• LNS for Traveling Salesman Problem
• Smith & Imeson, 2017

• LNS for scheduling
• Kovacs et al., 2012; Zulj et al., 2018

• LNS for path planning problems
• Li et al., 2022; 2021

• LNS for Mixed Integer Problems
• Fischetti & Lodi, 2003; Danna et al., 2005; Ghosh, 2007; Berthold, 2014; Maher et al., 2017;

Hendel, 2022

7

Large Neighborhood Search (LNS) for MIP

Initialize

Destroy

1. Find an initial solution via any method

Repair

2. Select a subset of 𝑘 variables 𝑋$ ⊂ 𝑋: 𝑋$ = 𝑘
and unassign them.

3. Reassign selected variables 𝑋!	while keeping all other
variable assignments frozen:
 solve sub-ILP over 𝑋!

Opportunity for ML guidance

Imitation Learning in Decomposition-based LNS

The first work on applying ML-guided LNS to solve ILP

Decompose variables into k equally sized variable subsets, re-optimize each variable subset in turn

Learn predict good decompositions from offline data
with imitation learning using behavior cloning (BC-LNS) and forward training (FT-LNS)

Data collection: given current solution, sample multiple random decompositions and evaluate solution
improvement, add the best decomposition for training set for imitation learning

[Jialin Song, Ravi Lanka, Yisong Yue, Bistra Dilkina.
A General Large Neighborhood Search Framework for Solving Integer Linear Programs, NeurIPS, 2020]

Large Neighborhood Search (LNS) for MIP

Initialize

Destroy

1. Find an initial solution via any method

Repair

2. Select a subset of 𝑘 variables 𝑋$ ⊂ 𝑋: 𝑋$ = 𝑘
and unassign them.

3. Reassign selected variables 𝑋!	while keeping all other
variable assignments frozen

Opportunity for ML guidance

RL-LNS: Reinforcement Learning Approach in LNS for MIP

Learning to select destroy sets by reinforcement learning

Data collection: collected with training
Training: GCN over bipartite MIP graph with features from [Gasse et al, 2019],
 each variable is predicted separately (shared parameters)
 trained with Actor-Critic
Test: compares favorably to decomposition-based R-LNS and FT-LNS,
 as well as random U-LNS, SCIP and Gurobi

[Yaoxin Wu, Wen Song, Zhiguang Cao, Jie Zhang.
Learning Large Neighborhood Search Policy for Integer Programming . NeurIPS, 2021]

Large Neighborhood Search (LNS) for MIP

Initialize

Destroy

1. Find an initial solution via any method

Repair

2. Select a subset of 𝑘 variables 𝑋$ ⊂ 𝑋: 𝑋$ = 𝑘
and unassign them.

3. Reassign selected variables 𝑋!	while keeping all other
variable assignments frozen

Opportunity for ML guidance
Oracle: Local Branching (slow but good)

Local Branching (Fischetti & Lodi, 2003)

LNS-destroy: Given an ILP and a feasible solutions 𝑥∗,
 choose at most 𝑘	variables to reoptimize while fixing the rest

How to find the optimal subset of k variables?
(the k variables to select, which maximize the objective value of the repaired solution)

Local Branching: solve a MIP with 𝑛 variables and 𝑚 + 1 constraints

Variable 𝑖	is selected
for LNS if changed
value from x*

!
":$!

∗%&

𝑥" + !
":$!

∗%'

(1 − 𝑥") ≤ 𝑘

min$ 𝑐(𝑥 	 objective
s.t. 𝐴𝑥 ≤ 𝑏 	 constraints

𝑥" ∈ {0,1} ∀𝑖 	 integrality

IL-LNS: Imitation Learning Approach in LNS for MIP

Learning to imitate Local Branching

Data collection: solve MIPs for Local Branching (2-3 hours each)
Training: GCN over bipartite MIP graph with features from [Gasse et al, 2019],
 each variable is predicted separately (shared parameters)
Test: combines Initial Solution by Neural Diving + IL-LNS, compares to SCIP

[Sonnerat, N., Wang, P., Ktena, I., Bartunov, S., and Nair, V. Learning a large neighborhood search algorithm
for mixed integer programs”. arXiv preprint, 2021]

Summary: ML in LNS for MIP
Method Representation Neural Architecture Action Training method

Song et al. NeurIPS 2020 PCA of A matrix MLP Partition variables
into p sets

Imitating best sampled
partition

Sonnerat et al. 2021
IL-LNS

Variable-constraint
graph

GCN Select subset of k
variables

Imitating oracle
(local branching)

Wu et al. NeurIPS 2021
RL-LNS

Variable-constraint
graph

GCN Select subset of k
variables

Standard RL

- Liu, Fischetti, Lodi. Learning to search in local branching. AAAI 2022 - ML to tune the runtime limit and neighborhood sizes
for Local Branching.

Learn the Repair heuristic for Routing Problems
- André Hottung, Kevin Tierney. Neural large neighborhood search for routing problems. Artificial Intelligence 2022
- Falkner et al. Large Neighborhood Search based on Neural Construction Heuristics, 2022

https://arxiv.org/abs/2004.00422
https://arxiv.org/abs/2107.10201
https://openreview.net/forum?id=IaM7U4J-w3c

Our approach: CL-LNS

Instead of learning only from the best samples provided by local branching…

We also learn to distinguish between good and bad samples with contrastive learning

A contrastive loss is a function whose value is low when the predicted action is similar to the positive samples
and dissimilar to the negative samples (similarity measured by dot products)

Prior Work on Contrastive Learning for COP

• Contrastive learning of visual representations (Hjelm et al., 2019; He et al., 2020; Chen et al., 2020)
and graph representations (You et al., 2020; Tong et al., 2021)

• Mulamba et al. (2021) derive a contrastive loss for decision-focused learning to solve COPs with
uncertain inputs that can be learned from historical data

• Duan et al. (2022) use contrastive pre-training to learn good representations for SAT.

19

Training and data collection pipeline

20

MIP instances

Find an initial
solution

1

0

1

0

0

0

1

1

Run Local
Branching
MIIP for 1
hour

For each
instance Find the best-

improving
neighborhood

In addition, find
1. Positive examples:
suboptimal
neighborhoods
2. Negative examples:
bad neighborhoods
similar to the good ones
3. Compute features

Add to dataset

1

0

0

1

0

1

0

1

reoptimize

Supervised contrastive
learning to predict good
neighborhood

Run 10 LNS steps

Contrastive learning - Data collection
For each training instance, we use the following procedure to collect data
• LNS + an exhaustive Local Branching search in the destroy step

21

Initialize

Destroy

1. Find an initial solution via any method

Repair

2. Run Local Branching with 1-hour cutoff to select the
subsets of 𝑘 variables that give the best improvement
- Collect multiple good subsets (up to 10)
- Collect multiple bad subsets similar to the good ones (up to 90)

3. Reassign selected variables 𝑋!	while keeping all other
variable assignments frozen

10 LNS steps

Contrastive learning - Data collection details

Contrastive learning - Data collection details

Optimal sample := variables changed in the optimal solution found by
local branching solved by SCIP within 1 hours

best_improve := improvement of the optimal sample over incumbent objective value

Positive samples:

- All solutions found by local branching with improvement >= 0.5 * best_improve

- up to max of 10 solutions

Contrastive learning - Data collection details

Optimal sample := variables changed in the optimal solution found by
local branching solved by SCIP within 1 hours

best_improve:= improvement of the optimal sample over incumbent objective value

Negative samples (P * Num Positive Samples, P=9):

- Randomly replace 5% of variables in the optimal sample, Solve it with SCIP
- Record it as a negative sample if improvement <= 0.05 * best_improve
- If not enough negative samples found, increase to 10% to 20%, 30%...100%

Features + ML Architecture

Variable features:
Static features from MIP:

[Gasse et al 2019] features (23)
+ [Khalil et al 2017] features (72) – not used in [Sonnerat et al, 2021]

Dynamic features: Include the features of past W incumbent solutions, Feature
size = W * 3

Features: incumb exists, incumbent value, LB-relax value
Edge features and constraint features: Static from MIP, the same as used in
previous work

Features

26

Gasse et al 2019 Khalil et al 2017 (at root)

Training data for one LNS stepContrastive learning – ML Architecture
Input
features

Constraint side
message passing

Variable side
message passing

Embedding
layers

Final embedding +
Sigmoid = [0,1]n 𝑆"#$	Positive Samples 𝑎 = 0,1 %

𝑆%&'	Negative samples 𝑎′ = 0,1 %

V, E, C Features

ML Architecture: ILP Graph + Embedding layers to d=64 + graph attention network
(GAT) (Brody et al., 2022) with H=8 attention heads + two rounds of message passing
+ MLP + sigmoid -> [0,1] score per variable
 We use the same message-passing mechanism in previous work (Gasse et al., 2019)

 We replace convolution layers with attention layers

Training data for one LNS stepContrastive learning – Loss Function
Input
features

Constraint side
message passing

Variable side
message passing

Embedding
layers

Final embedding +
Sigmoid = [0,1]n

Loss computation:
The final loss is summed
over multiple LNS steps
in the batch

𝑆"#$	Positive Samples 𝑎 = 0,1 %

𝑆%&'	Negative samples 𝑎′ = 0,1 %

V, E, C Features

optimizes the negative log probability of the final embedding being similar to the positive samples

supervised contrastive loss
InfoNCE
(Oord et al., 2018;
He et al., 2020)

Testing pipeline

29

A MIP instance

Find an initial
solution

1

0

1

0

0

0

1

1

1

0

0

1

0

1

0

1

reoptimize

Use the ML model to
predict 𝝅(𝒙)	and select
variables to destroy

Run until timeout

Compute
features

Neighborhood selection during testing:
• Given a neighborhood size 𝑘
• Greedily choose 𝑘 variables with the largest embedding values 𝝅(𝒙)

Adaptive Neighborhood Size (Sonnerat et al.)
• When no improving solution is found, 𝑘 ← 𝑘×𝛼 where 𝛼 > 1
• We upper bound 𝑘 by half of the number of variables

Experimental Setup

MVC: Minimum Vertex Cover

MIS: Maximum Independent Set

CA: Combinatorial Auction

SC: Minimum Set Cover

Training and Testing Testing only

Baselines

- BnB: SCIP Branch and Bound solver (with the aggressive mode -improving the objective value)

- RANDOM: LNS with random neighborhood selection

- LB-RELAX: LNS with local branching relaxation heuristics [Huang et al, CPAIOR 2023]

- IL-LNS: SOTA imitation learning approach [Sonnerat et al, 2021]

- RL-LNS: SOTA reinforcement learning approach [Wu et al, 2021]

vs.

- CL-LNS (ours)

Results: Primal Gap over Time (secs)

Min Vertex Set-S Min Vertex Set-L Max Independent Set-S Max Independent Set-L

Combinatorial Auctions-S Combinatorial Auctions-L Min Set Cover-S Min Set Cover-L

Primal gap % at 60 minutes - Small instances
Min Vertex Set-S Max Independent Set-S

Combinatorial Auctions-S Min Set Cover-S

Primal Gap:
normalized difference
between the primal bound
v (at time cutoff) and a
precomputed best known
objective value v∗
as %

|𝑣 − 𝑣∗|
max(𝑣, 𝑣∗, 𝜖) ∗ 100%

Primal Integral at 60 minutes - Small instances
Min Vertex Set-S Max Independent Set-S

Combinatorial Auctions-S Min Set Cover-S

The primal integral at
time q is the integral
on [0, q] of the primal
gap as a function of
runtime.

Captures the quality of
and
the speed at which
solutions are found.

Primal gap at 60 minutes - Large instances
Min Vertex Set-L Max Independent Set-L

Combinatorial Auctions-L Min Set Cover-L

Primal Integral at 60 minutes - Large instances
Min Vertex Set-L Max Independent Set-L

Combinatorial Auctions-L Min Set Cover-L

Results: Survival Rate at a given primal gap threshold is the fraction of instances with
primal gaps below the threshold under the method of choice

Min Vertex Set-S Min Vertex Set-L Max Independent Set-S Max Independent Set-L

Combinatorial Auctions-S Combinatorial Auctions-L Min Set Cover-S Min Set Cover-L

Ablation Study

- Imitation Learning vs. Contrastive Learning
- GCN vs GAT
- Partial features (PF) vs Full features (FF)

- PF: Features from IL-LNS [Sonnerat et al, 2021] approach (Gasse et al. 2019)
- FF: PF + additional variable features computed at the root node of BnB (Khalil et al. 2016)

IL-LNS benefits from GAT+FF but still
underperforms all CL-LNS variants

On MVC-S, CL-LNS-GAT-PF has better
primal integral than CL-LNS-GCN-PF =
benefit of replacing GCN with GAT.

On CA-S, CL-LNS-GAT-FF has better
primal integral than CL-LNS-GAT-PF =
benefit of replacing PF with FF.

Adding the two enhancements to the
overall best performance of CL-LNS

Conclusion

• proposed CL-LNS to learn efficient and effective destroy heuristics in LNS for ILPs.
• Based on the novel idea of using Contrastive Loss
• Presented a novel data collection process tailored for CL-LNS
• Used GAT with a richer set of features to further improve its performance

• CL-LNS significantly outperformed state-of-the-art approaches on four benchmarks, according to multiple
metrics
• CL-LNS achieved good generalization performance to larger instances

Searching Large Neighborhoods for Integer Linear Programs with Contrastive Learning.
Taoan Huang, Aaron Ferber, Yuandong Tian, Bistra Dilkina and Benoit Steiner. ICML 2023

https://arxiv.org/pdf/2302.01578.pdf

Thank you!

ML Combinatorial
Optimization

‣ Exciting and growing research area

‣ Design discrete optimization algorithms
with learning components

‣ Learning methods that incorporate the
combinatorial decision making they inform

