Detecting Implied Integers using Totally Unimodular Submatrices Rolf van der Hulst* - r.p.vanderhulst@utwente.nl, University of Twente

Implied Integers

Setting: mixed-integer linear program (MILP) with variable set N and integers $I \subseteq N$.

Definition: $J \subseteq N$ are *implied integers*, if for each feasible solution x to the relaxed problem, there exists a solution $x' = (x_{N\setminus j}, x'_j)$ that is feasible for the original problem such that $c^{T}x' \leq c^{T}x$ and x'_{I} is integral.

Original problem	Relaxed problem	Tigł	
min <i>c</i> ' x	min <i>c</i> ' x	mi	
s.t. $Ax \leq b$	s.t. $Ax \leq b$	S.	
$x_j \in \mathbb{Z}, \forall j \in \mathbf{I}$	$x_j \in \mathbb{Z}, \forall j \in \mathbf{I} \setminus \mathbf{J}$		

Goal: detect implied integers in mixed-integer linear programs.

Why are implied integers useful?

Theorem 1. If $J \subseteq N$ are implied integers, then the original problem, the relaxed problem and the tightened problem are equivalent.

Best of both worlds:

- Relaxed problem: no need to branch on variables in J
- Tightened problem: use integrality of x_l in cutting planes, presolving, domain propagation, etc.

Implied Integers and Total Unimodularity

Theorem 2. Consider a MILP of the form min $c^{T}x \perp d^{T}y \perp e^{T}z$

s.t.
$$Ax + By \leq f$$

 $Dx + Ez \leq g$
 $x \in \mathbb{Z}^{n_1}$
 $y \in \mathbb{Z}^{n_2} \times \mathbb{R}^{n_3}$
 $z \in \mathbb{R}^{n_4}$

If B is totally unimodular and A and f are integral, then y are implied integers.

[1] R. E. Bixby and D. K Wagner. An almost linear-time algorithm for graph realization. Mathematics of Operation research, 13(1), 1988.

[2] A. Gleixner et al. MIPLIB 2017: data-driven compilation of the 6th mixed-integer programming library. Mathematical Programming Computation, 13(3):443–490, sep 2021.

htened problem in c[•]x t. $Ax \leq b$

 $x_j \in \mathbb{Z}, \forall j \in \mathbf{I} \cup \mathbf{J}$

Detecting Network Matrices

Detecting totally unimodular (TU) matrices is too slow. We detect **network matrices**, a large subclass of TU matrices, instead.

	f	g	h	i.	j
a	[-1]	Ŏ	1	0	07
b	1	-1	-1	0	0
С	0	1	1	-1	0
d	0	1	1	0	1
e	0	0	0	1	1

A matrix is a network matrix if there exists a directed spanning tree such that the ± 1 entries of each column correspond to a oriented path in the tree.

Repeatedly solve the **Column Augmentation Problem:** Given network matrix M and column b, is M' = [M b] a network matrix?

Main Challenge: ambiguity. We can *flip* the graph around any 2-separation, to find another graph with the same matrix.

Solution: use SPQR trees (3-connected components) to represent all 2-separations of G and all graphs of M.

Solving the column augmentation problem: determine if the nonzeros of b form an oriented path [1]. The path problem decom*poses* over the SPQR tree!

Our second contribution: we developed an algorithm for the **Row Augmentation Problem** that uses similar ideas.

* The author acknowledges funding support from the Dutch Research Council (NWO) on grant number OCENW.M20.151

Algorithm

We detect the structure of Theorem 2 by growing *B*, which we do by solving the row/column augmentation problem.

Phases:

- variables, determine if it can augment B.
- Use the one that has the most columns.

Results

as baseline.

Mean % of implied integer variables 1.3% # affected instances (out of 240) 42

- Mean detection time

Conclusion & Discussion

- SCIP is necessary.

1. For each block of the submatrix formed by the continuous

2. Greedily augment B with the columns of integer variables. 3. Run steps 1-2 for network matrices (column augmentation) and transposed network matrices (row augmentation).

Comparison on MIPLIB 2017 benchmark set [2] with SCIP 9.0

Method SCIP 9.0 TU detection **16.4%** 162

	— TU c — SCIP	letection 9.0				
100 150 200 nber of instances (/240)						
: 0.2 seconds						

• Strange: 3% increase in solving time, 2% increase in nodes

• We can quickly find an **order of magnitude** more implied integers in MILP's from practice than the current methods. • Detected implied integers do not enhance performance of SCIP; further research into exploiting implied integers in