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Binarized Neural Networks (BNNs)

Definition

Feedforward neural networks with binary weights and activation functions

(Hubara et al. [2016])

Strengths

Reduce memory size and improve power-efficiency (Hubara et al. [2016])

Applied in small embedded devices (McDanel et al. [2017])

Achieve comparable results as deep neural networks in image

classification (Hubara et al. [2016]) and image super resolution (Ma et al.

[2019])

BNNVerification Problem

Notation

L: number of hidden layers

n`: number of neurons in the `th layer (` ∈ {0, · · · , L + 1})
N `: set of neurons in the `th layer (` ∈ {0, · · · , L + 1})

q ∈ N: coordinates of feature vectors are quantized as multiples of
1

q

Problem

Is there a perturbed feature vector x0 close to x̄ that a given BNN classifies as

a class t 6= t̄?

z∗ε (x̄) := max
x0∈1

qZ
n0
+ ∩[0,1]n0∥∥x0−x̄

∥∥
1≤ε

{ft(x0)− ft̄(x
0) : t ∈ NL+1 \ {t̄}} > 0?

Application

Measure the robustness of BNNs by solving the BNN verification

problem for many feature vectors

Previous Work

Narodytska et al. [2018] investigated the BNN verification problem as

Boolean satisfiability problems

Fischetti and Jo [2018] proposed a MILP formulation for the deep neural

network verification problem and applied the idea of fixing variables to

solve the obtained MILP problem

MIP Formulation

Decision Variables

x0: decision variables for the perturbed feature vector

x`: binary decision variables for the output vector of the `th hidden layer

Notation

X0 := {x0 ∈ 1

q
Zn0
+ ∩ [0, 1]n

0
:
∥∥∥x0 − x̄

∥∥∥
1
≤ ε}

W`: weight matrix between the (`− 1)th layer and the `th layer

b`: bias vector between the (`− 1)th layer and the `th layer

a`(x`−1) := W`(2x`−1 − 1) + b`

g`(x`−1) := 1R+
(a`(x`−1))

Formulation

max
x0, · · · , xL

max{aL+1t (xL)− aL+1
t̄

(xL) : t ∈ NL+1 \ {t̄}}

s.t. x` = g`(x`−1), ∀` ∈ {1, · · · , L},
x0 ∈ X0,

x` ∈ {0, 1}n
`
, ∀` ∈ {1, · · · , L}

Objective Function Linearization

TwoWays to Linearize the Objective Function

Consider each alternative class t ∈ NL+1 \ {t̄} individually

Used in previous work on MIP methods to solve the BNN verification

problem

Solve the obtained MIP problem to obtain the maximum z∗ε (x̄, t) for each
t ∈ NL+1 \ {t̄}
Find z∗ε (x̄) = max{z∗ε (x̄, t) : t ∈ NL+1 \ {t̄}}

Solve a single MIP problem incorporating all decisions on t ∈ NL+1 \ {t̄}

Developed for better MIP methods to solve the BNN verification

problem in our work

Add a binary decision variable zt indicating whether t is selected as an

alternative class (t ∈ NL+1 \ {t̄})
Add a binary decision variable vti for ztx

L
i (t ∈ NL+1 \ {t̄}, i ∈ NL)

Layerwise Derived Valid Inequalities

Notation

X` := g`(X`−1) (` ∈ {1, · · · , L})
X0

out := X0

X`
out ⊂ {0, 1}n

`
: set containing X` (` ∈ {1, · · · , L})

Observation

With access to a description for XL, z∗ε (x̄) can be obtained by solving a

MIP problem on XL

Goal

Find valid inequalities for X` using an outer approximation X`−1
out for

X`−1 by each layer

Add obtained valid inequalities to the MIP formulation to solve the MIP

problem for the BNN verification problem more efficiently

Valid Inequalities: Variable Fixing

Question

Is cix
`
i ≤

ci − 1

2
valid for X`? (i ∈ N `, ci ∈ {−1, 1})

Motivated by Fischetti and Jo [2018]’s idea to fix variables in the deep

neural network verification problem

Answer (Case with ci = 1)

Yes if

max{x`i : x
`
i = g`i (x

`−1), x`−1 ∈ X`−1
out } ≤ 0

⇔ max{a`i(x
`−1) : x`−1 ∈ X`−1

out } < 0

Valid Inequalities: Two-variable Inequalities

Question

Is cix
`
i+ckx

`
k ≤ ci + ck

2
valid forX`? (i, k ∈ N ` satisfying i > k, ci, ck ∈ {−1, 1})

Answer (Case with ci = 1 and ck = 1)

Yes if

max{x`i + x`k : x`i = g`i (x
`−1), x`k = g`k(x

`−1), x`−1 ∈ X`−1
out } ≤ 1

⇔ max{a`i(x
`−1) : x`−1 ∈ X`−1

out , a
`
k(x

`−1) ≥ 0} < 0

Algorithmwith Layerwise Derived Valid Inequalities

Main Ideas

For each candidate, check whether a layerwise derived valid inequality is

valid by solving the MIP subproblem

Add obtained valid inequalities to the MIP formulation for the BNN

verification problem

Bottleneck: Solving MIP Subproblems

Create an inner approximation X`
in for X

`

Rule out valid inequalities violated by a vector in X`
in to avoid solving

MIP subproblems

Finding Two-variable Inequalities is Harder than Finding Variable Fixings

Find only variable fixings first

Solve the MIP problem by exploring the root node

Find two-variable inequalities only if it fails to solve to the optimality

Computational Results

Basic(Indiv): solve the MIP problem obtained by considering each

alternative class individually for each alternative class t ∈ NL+1 \ {t̄}
Basic(Incorp): solve the single MIP problem obtained by incorporating

decisions on alternative classes

Fix: solve the single MIP problem with added variable fixing

Fix+TwoVar: solve the single MIP problem with added variable fixing and

(if needed) two-variable inequalities

Method

Mean

Relative

LP Gap

Mean

Verification

Time (sec.)

Basic(Indiv) 271.6% 1279.1

Basic(Incorp) 271.6% 568.0

Fix 80.6% 355.0

Fix+TwoVar 39.8% 112.7

Table 1. Results for Instances with

Non-ε-perturbed x̄

Method

Mean

Relative

LP Gap

Time Limit

(1 hour)

Fraction

Basic(Indiv) 247.7% 98.5%

Basic(Incorp) 252.2% 100.0%

Fix 269.9% 100.0%

Fix+TwoVar 243.5% 100.0%

Table 2. Results for Instances with

ε-perturbed x̄

Conclusion

The MIP method employing layerwise derived valid inequalities

outperforms the other MIP methods as a method to solve the BNN

verification problem

The objective function linearization incorporating decisions on

alternative classes results in a more efficient method to solve the BNN

verification problem than the other linearization considering each

alternative class individually
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