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Binarized Neural Networks (BNNs)

Definition

Feedforward neural networks with binary weights and activation functions
(Hubara et al. [2016])

Strengths

= Reduce memory size and improve power-efficiency (Hubara et al. [2016])
= Applied in small embedded devices (McDanel et al. [2017])

= Achieve comparable results as deep neural networks in image
classification (Hubara et al. [2016]) and image super resolution (Ma et al.
12019])
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BNN Verification Problem

Notation
= L: number of hidden layers
= n': number of neurons in the ¢™ layer (¢ € {0,--- , L+ 1})
= N*: set of neurons in the ¢ layer (¢ € {0,--- , L + 1})
: : . 1
= ¢ € N: coordinates of feature vectors are quantized as multiples of —
q
Problem

s there a perturbed feature vector x” close to % that a given BNN classifies as
aclasst #t7?
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Application

= Measure the robustness of BNNs by solving the BNN verification
problem for many feature vectors

Previous Work

= Narodytska et al. [2018] investigated the BNN verification problem as
Boolean satisfiability problems

= Fischetti and Jo [2018] proposed a MILP formulation for the deep neural
network verification problem and applied the idea of fixing variables to
solve the obtained MILP problem
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MIP Formulation

Decision Variables

= xU: decision variables for the perturbed feature vector
- xt binary decision variables for the output vector of the /™ hidden layer

Notation

L_,0 0
= XV .= {x' e 521 n1[0,1]" : ‘ x! —)‘(Hl <€}
= W weight matrix between the (0 — 1)th layer and the /™ layer

* b': bias vector between the (0 — 1)th layer and the ¢ layer
- ag(xg_l) = W€(2X€_1 — 1)+ b
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Objective Function Linearization
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Layerwise Derived Valid Inequalities

Two Ways to Linearize the Objective Function

Consider each alternative class t € N**1\ {#} individually

= Used in previous work on MIP methods to solve the BNN verification
problem

= Solve the obtained MIP problem to obtain the maximum z7(x,¢) for each
te NFT\ (1)
* Find 2/ (%) = max{z¥(x,t) : t € N1\ {1}}

Solve a single MIP problem incorporating all decisions on t € NYH1\ {#}

= Developed for better MIP methods to solve the BNN verification
problem in our work

= Add a binary decision variable z; indicating whether t is selected as an
alternative class (t € NYF1\ {£})

= Add a binary decision variable vy; for ztxiL (t e NVTI\ {7}, i e ND)

Notation
X=X e {1, L))
0 0
. XOU.t e X

¢
: Xg . € {0,1}" : set containing Xt e {1,---,L})
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Observation

= With access to a description for X%, 22 (X) can be obtained by solving a

MIP problem on xL

Goal

= Find valid inequalities for Xt using an outer approximation Xfu_tl for
xt-1 by each layer

= Add obtained valid inequalities to the MIP formulation to solve the MIP
problem for the BNN verification problem more efficiently

Valid Inequalities: Variable Fixing

Question
C; — 1

S cixf < valid for X2 (7 € Ng, c; € {—1,1})

= Motivated by Fischetti and Jo [2018]’s idea to fix variables in the deep
neural network verification problem

Answer (Case with ¢; = 1)
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Algorithm with Layerwise Derived Valid Inequalities

Main ldeas

= For each candidate, check whether a layerwise derived valid inequality is
valid by solving the MIP subproblem

= Add obtained valid inequalities to the MIP formulation for the BNN
verification problem

Bottleneck: Solving MIP Subproblems

= Create an inner approximation an for X*

* Rule out valid inequalities violated by a vector in an to avoid solving
MIP subproblems

Finding Two-variable Inequalities is Harder than Finding Variable Fixings

= Find only variable fixings first
Solve the MIP problem by exploring the root node
Find two-variable inequalities only if it fails to solve to the optimality

Computational Results

Basic(Indiv): solve the MIP problem obtained by considering each
alternative class individually for each alternative class ¢ € Nt {7}

= Basic(Incorp): solve the single MIP problem obtained by incorporating
decisions on alternative classes

= Fix: solve the single MIP problem with added variable fixing

= FixtTwoVar: solve the single MIP problem with added variable fixing and
(if needed) two-variable inequalities

Yes if
max{:lzf : :cf = g,f(xg_l),xg_l € Xf;tl} <0
& max{af(xg_l) xI7e X(‘fu_tl} <0
Valid Inequalities: Two-variable Inequalities
Question

C; + Ci

s cixfjtckxf; < valid for X7 (1, k € Nt satisfyingi > k, ci,cp € {—1,1})

Answer (Case with ¢; = 1 and ¢;. = 1)

Yes if

max{xf + :Ci ; xf =

x~le xt-1 ai(xg_l) >0} <0

out

gl (x! Y2l = ghx D x e X <1

out
& max{af(xg_l) :

Mean Mean Mean Time Limit
Method Relative Verification Method Relative (1 hour)
LP Gap Time (sec.) LP Gap  Fraction
Basic(Indiv) 271.6% 1279.1  Basic(lndiv) 247.7% 98.5%
Basic(lncorp) 271.6% 568.0 Basic(lncorp) 252.2% 100.0%
Fix 80.6% 355.0 Fix 269.9% 100.0%
Fix+TwoVar 39.8% 112.7 FixtTwoVar 243.5% 100.0%

Table 2. Results for Instances with
e-perturbed x

Table 1. Results for Instances with
Non-e-perturbed x

Conclusion

= The MIP method employing layerwise derived valid inequalities
outperforms the other MIP methods as a method to solve the BNN
verification problem

= The objective function linearization incorporating decisions on
alternative classes results in a more efficient method to solve the BNN
verification problem than the other linearization considering each
alternative class individually
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