Layerwise Derived Valid Inequalities for the Binarized Neural Network Verification Problem

¹Department of Mathematics, University of Wisconsin-Madison, wkim73@wisc.edu

Binarized Neural Networks (BNNs)

Definition

Feedforward neural networks with binary weights and activation functions (Hubara et al. [2016])

Strengths

- Reduce memory size and improve power-efficiency (Hubara et al. [2016])
- Applied in small embedded devices (McDanel et al. [2017])
- Achieve comparable results as deep neural networks in image classification (Hubara et al. [2016]) and image super resolution (Ma et al. [2019])

BNN Verification Problem

Notation

- L: number of hidden layers
- n^{ℓ} : number of neurons in the ℓ^{th} layer ($\ell \in \{0, \cdots, L+1\}$)
- N^{ℓ} : set of neurons in the ℓ^{th} layer ($\ell \in \{0, \cdots, L+1\}$)
- $q \in \mathbb{N}$: coordinates of feature vectors are quantized as multiples of -

Problem

Is there a perturbed feature vector \mathbf{x}^0 close to $\bar{\mathbf{x}}$ that a given BNN classifies as a class $t \neq \overline{t}$?

$$\begin{aligned} z_{\epsilon}^{*}(\bar{\mathbf{x}}) &:= \max_{\substack{\mathbf{x}^{0} \in \frac{1}{q} \mathbb{Z}_{+}^{n^{0}} \cap [0,1]^{n^{0}} \\ \|\mathbf{x}^{0} - \bar{\mathbf{x}}\|_{1} \leq \epsilon}} \{f_{t}(\mathbf{x}^{0}) - f_{\bar{t}}(\mathbf{x}^{0}) : t \in N^{L+1} \setminus \{\bar{t}\}\} > 0? \end{aligned}$$

Application

Measure the robustness of BNNs by solving the BNN verification problem for many feature vectors

Previous Work

- Narodytska et al. [2018] investigated the BNN verification problem as Boolean satisfiability problems
- Fischetti and Jo [2018] proposed a MILP formulation for the deep neural network verification problem and applied the idea of fixing variables to solve the obtained MILP problem

Woojin Kim¹, Jim Luedtke²

MIP Formulation

Decision Variables

- \mathbf{x}^0 : decision variables for the perturbed feature vector
- \mathbf{x}^{ℓ} : binary decision variables for the output vector of the ℓ^{th} hidden layer

Notation

•
$$X^0 := \{ \mathbf{x}^0 \in \frac{1}{q} \mathbb{Z}^{n^0}_+ \cap [0, 1]^{n^0} : \left\| \mathbf{x}^0 - \bar{\mathbf{x}} \right\|_1 \le \epsilon \}$$

- \mathbf{W}^{ℓ} : weight matrix between the $(\ell 1)^{\text{th}}$ layer and the ℓ^{th} layer
- \mathbf{b}^{ℓ} : bias vector between the $(\ell 1)^{\text{th}}$ layer and the ℓ^{th} layer

•
$$a^{\ell}(\mathbf{x}^{\ell-1}) := \mathbf{W}^{\ell}(2\mathbf{x}^{\ell-1} - \mathbf{1}) + \mathbf{b}^{\ell}$$

•
$$g^{\ell}(\mathbf{x}^{\ell-1}) := \mathbb{1}_{\mathbb{R}_+}(a^{\ell}(\mathbf{x}^{\ell-1}))$$

Formulation

$$\begin{aligned} \max_{\mathbf{x}^{0},\cdots,\mathbf{x}^{L}} & \max\{a_{t}^{L+1}(\mathbf{x}^{L}) - a_{\overline{t}}^{L+1}(\mathbf{x}^{L}) : t \in N^{L+1} \setminus \{\overline{t}\}\} \\ \text{s.t.} & \mathbf{x}^{\ell} = g^{\ell}(\mathbf{x}^{\ell-1}), \ \forall \ell \in \{1,\cdots,L\}, \\ & \mathbf{x}^{0} \in X^{0}, \end{aligned}$$

$$\mathbf{x}^{\ell} \in \{0, 1\}^{n^{\ell}}, \ \forall \ell \in \{1, \cdots, L\}$$

Objective Function Linearization

Two Ways to Linearize the Objective Function

Consider each alternative class $t \in N^{L+1} \setminus \{\overline{t}\}$ individually

- Used in previous work on MIP methods to solve the BNN verification problem
- Solve the obtained MIP problem to obtain the maximum $z_{\epsilon}^*(\bar{\mathbf{x}}, t)$ for each $t \in N^{L+1} \setminus \{\bar{t}\}$
- Find $z_{\epsilon}^*(\bar{\mathbf{x}}) = \max\{z_{\epsilon}^*(\bar{\mathbf{x}}, t) : t \in N^{L+1} \setminus \{\bar{t}\}\}$

Solve a single MIP problem incorporating all decisions on $t \in N^{L+1} \setminus \{\bar{t}\}$

- Developed for better MIP methods to solve the BNN verification problem in our work
- Add a binary decision variable z_t indicating whether t is selected as an alternative class $(t \in N^{L+1} \setminus \{\overline{t}\})$
- Add a binary decision variable v_{ti} for $z_t x_i^L$ $(t \in N^{L+1} \setminus \{\bar{t}\}, i \in N^L)$

Observation

Goal

Question

Is $c_i x$

Answer (Case with $c_i = 1$)

Yes if

Question

Yes if

²Department of Industrial & Systems Engineering, University of Wisconsin-Madison, jim.luedtke@wisc.edu

Layerwise Derived Valid Inequalities

Notation

• $X^{\ell} := g^{\ell}(X^{\ell-1}) \ (\ell \in \{1, \cdots, L\})$ • $X_{out}^0 := X^0$ • $X_{\text{out}}^{\ell} \subset \{0,1\}^{n^{\ell}}$: set containing X^{ℓ} ($\ell \in \{1,\cdots,L\}$)

• With access to a description for X^L , $z_{\epsilon}^*(\bar{\mathbf{x}})$ can be obtained by solving a MIP problem on X^L

• Find valid inequalities for X^{ℓ} using an outer approximation $X_{out}^{\ell-1}$ for $X^{\ell-1}$ by each layer

• Add obtained valid inequalities to the MIP formulation to solve the MIP problem for the BNN verification problem more efficiently

Valid Inequalities: Variable Fixing

$$c_i^{\ell} \le \frac{c_i - 1}{2}$$
 valid for X^{ℓ} ? ($i \in N^{\ell}, c_i \in \{-1, 1\}$)

 Motivated by Fischetti and Jo [2018]'s idea to fix variables in the deep neural network verification problem

$$\max\{x_i^{\ell} : x_i^{\ell} = g_i^{\ell}(\mathbf{x}^{\ell-1}), \mathbf{x}^{\ell-1} \in X_{\text{out}}^{\ell-1}\} \le 0$$

$$\Leftrightarrow \max\{a_i^{\ell}(\mathbf{x}^{\ell-1}) : \mathbf{x}^{\ell-1} \in X_{\text{out}}^{\ell-1}\} < 0$$

Valid Inequalities: Two-variable Inequalities

Is $c_i x_i^{\ell} + c_k x_k^{\ell} \le \frac{c_i + c_k}{2}$ valid for X^{ℓ} ? $(i, k \in N^{\ell}$ satisfying $i > k, c_i, c_k \in \{-1, 1\}$) Answer (Case with $c_i = 1$ and $c_k = 1$)

$$\max\{x_i^{\ell} + x_k^{\ell} : x_i^{\ell} = g_i^{\ell}(\mathbf{x}^{\ell-1}), x_k^{\ell} = g_k^{\ell}(\mathbf{x}^{\ell-1}), \mathbf{x}^{\ell-1} \in X_{\text{out}}^{\ell-1}\} \le 1$$

$$\Leftrightarrow \max\{a_i^{\ell}(\mathbf{x}^{\ell-1}) : \mathbf{x}^{\ell-1} \in X_{\text{out}}^{\ell-1}, a_k^{\ell}(\mathbf{x}^{\ell-1}) \ge 0\} < 0$$

Algorithm with Layerwise Derived Valid Inequalities

Main Ideas

- For each candidate, check whether a layerwise derived valid inequality is valid by solving the MIP subproblem
- Add obtained valid inequalities to the MIP formulation for the BNN verification problem

Bottleneck: Solving MIP Subproblems

• Rule out valid inequalities violated by a vector in X_{in}^{ℓ} to avoid solving MIP subproblems

Finding Two-variable Inequalities is Harder than Finding Variable Fixings

- Find only variable fixings first
- Solve the MIP problem by exploring the root node
- Basic(Indiv): solve the MIP problem obtained by considering each alternative class individually for each alternative class $t \in N^{L+1} \setminus \{\overline{t}\}$ Basic(Incorp): solve the single MIP problem obtained by incorporating decisions on alternative classes
- Fix: solve the single MIP problem with added variable fixing
- Fix+TwoVar: solve the single MIP problem with added variable fixing and (if needed) two-variable inequalities

Metho

Basic(Ind Basic(Inco Fix Fix+Two

- The MIP method employing layerwise derived valid inequalities outperforms the other MIP methods as a method to solve the BNN verification problem
- The objective function linearization incorporating decisions on alternative classes results in a more efficient method to solve the BNN verification problem than the other linearization considering each alternative class individually

• Create an inner approximation X_{in}^{ℓ} for X^{ℓ}

• Find two-variable inequalities only if it fails to solve to the optimality

Computational Results

d	Mean Relative LP Gap	Mean Verification Time (sec.)	Method	Mean Relative LP Gap	Time Limit (1 hour) Fraction
div)	271.6%	1279.1	Basic(Indiv)	247.7%	98.5%
orp)	271.6%	568.0	Basic(Incorp)	252.2%	100.0%
	80.6%	355.0	Fix	269.9%	100.0%
Var	39.8%	112.7	Fix+TwoVar	243.5%	100.0%

Table 1. Results for Instances with Non- ϵ -perturbed $\bar{\mathbf{x}}$

Table 2. Results for Instances with ϵ -perturbed $\bar{\mathbf{x}}$

Conclusion