
A strongly polynomial algorithm for linear 
programs with at most two non-zero entries 

per row or column

Bento Natura
MIP Workshop 2024

Joint work with Daniel Dadush, Zhuan Khye Koh, Neil Olver, and László Végh



c

opt

Is there a strongly polynomial algorithm for LP?
…i.e. an algorithm with running time …poly(m)

Linear Programming (LP)
 min⟨c, x⟩ : Ax = b, x ≥ 0, A ∈ ℝn×m

LP can be solved in time  
(Khachiyan ’79 (Ellipsoid Method), Karmarkar ’84 
(Interior Point Methods),…

poly(m, size(A, b, c))

Dadush, Koh, N., Olver, Végh ‘24: 
There exists a strongly polynomial time algorithm for LP with at most two 
nonzero entries per column.

Note: Any LP can be written 
with at most three nonzero 
entries per column

+ PSPACE



The minimum-cost generalized flow problem
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Primal:              Dual:       min⟨c, x⟩ : Ax = b, x ≥ 0 max⟨y, b⟩ : A⊤y ≤ c

Dual:      max⟨y, b⟩ : γeyj − yi ≤ ce ∀e = (i, j)

Primal:     ,  min⟨c, x⟩ : ∑
e∈δ−(i)

γexe − ∑
e∈δ+(i)

xe = bi, ∀i ∈ [n] x ≥ 0

Hochbaum ’04: LP with 2 variables 
per column can be reduced to 
minimum-cost generalized flow



Prior strongly polynomial special cases

Primal feasibility

Dual feasibility

,  min⟨c, x⟩ : ∑
e∈δ−(i)

γexe − ∑
e∈δ+(i)

xe = bi, ∀i ∈ [n] x ≥ 0

•     Minimum cost flow problem          
           Tardos ’85

•  and                     
           Tardos ‘86

γ ≡ 1 ⇒
⇒
γ ∈ ℤm log(∥γ∥∞) = O(poly(m))
⇒

• Végh ’13:  answering 
longstanding open question

• Olver, Végh ’20: “Simpler and faster” 
now in 

Õ(m2n3)

Õ(m2n)

• First strongly polynomial algorithm: Seminal work 
by Megiddo ’83 introducing parametric search 
technique (Meta algorithm, binary search on steroids) 

• Hochbaum-Naor '94:  fastest deterministic

• First algorithm not relying on parametric search: 
Dadush, Koh, N. and Végh ’21: usage of Discrete 
Newton method

Õ(mn2)

Special gains γ

 (MCGF)



Our Road to solve the MCGF problem

Discrete Newton Method (DN) is strongly polynomial for dual feasibility- Dadush, Koh, N., Végh ’20
First combinatorial dual feasibility algorithm.

Question: Find a more combinatorial/structured algorithm that solves 2VPI? (Somewhen in 2019)

“A Simpler and Faster Strongly Polynomial Algorithm for Generalized Flow Maximization” - Olver, Végh  
STOC ’17, JACM ’20. Fastest/Cleanest (combinatorial) primal feasibility algorithm

Question: Combine combinatorial primal 
feasibility and dual feasibility algorithms 

to tackle optimization MCGF problem?

Question: IPM are usually most efficient methods for LP. Is 
there an IPM with running time ?f(m, n)

No progress :(



Predictor - Corrector Path Following

• Given  in ‘neighborhood’ around  for some 

• Compute iterates  by alternating between

• Predictor steps: decrease  by moving ‘down’ the central 
path

• Corrector steps: move back ‘closer’ to the central path 
for the same  (Newton step).

x0 xμ0
μ0 > 0

x1, …, xt

μ

μ

Mizuno-Todd-Ye ‘93

Each iteration takes  linear system solves

Standard analysis: Decrease  by a factor of 2 in  iterations

O(1)

μ O( m)



Prior Exact Interior Point Methods
,  variables,  equalitiesmin⟨c, x⟩ : Ax = b, x ≥ 0 m n

Vavasis-Ye ’96, Monteiro-Tsuchiya ’03 - ’05,

Layer 1 Layer 2 Layer 3

Layered-least-squares (LLS) 

Lan-Monteiro-Tsuchiya ’09
Trust-region based IPM

Dadush-Huiberts-N.-Végh ‘20
Scaling-invariant LLS

Number of iterations to solve LP exactly depends on condition number of matrix A



Straight Line 
Complexity 

Optimality gap 

x𝔪
i (g)

g



The max central path

 is:
•Concave
•Monotone increasing
•Piecewise linear 
•#pieces  #edges of , #vertices of )

x𝔪
i (g)

≤ min( P P

x𝔪
i (g) := max{xi : Ax = b, ⟨c, x⟩ − OPT ≤ g, x ≥ 0}

• Breakpoints of  correspond to vertices of 
• Line segments of  correspond to edges of 

x𝔪
i P

x𝔪
i P

 ,     min⟨c, x⟩ : Ax = b, x ≥ 0, A ∈ ℝn×m P := {x : Ax = b, x ≥ 0}

xi
P

g

gxi

For any variable …i ∈ [m]



Straight line complexity
x𝔪

i (g) := max{xi : Ax = b, ⟨c, x⟩ − OPT ≤ g, x ≥ 0}

SLC = 2

LP:     , 
 variables,  constraints
min⟨c, x⟩ : Ax = b, x ≥ 0

m n

Straight Line Complexity 
( ):
Minimum number of linear 
segments between  and 

 on .

SLCi

1
2

x𝔪
i

x𝔪
i [0,∞]

x𝔪
i (g)

1
2

x𝔪
i (g)

g …gap

x𝔪
i (g)

Theorem (Allamigeon, Dadush, Loho, N., Végh ’22):
Given a suitable initial point, there exists an IPM that solves an LP in strongly polynomial 
many iterations if for all variables  we have that  = .i ∈ [m] SLC(x𝔪

i ) O(poly(m, n))



SLC for maximum flow
Instance: directed graph , capacities , special arc 
Goal:        , 

G = (V, E) u : E → ℝ≥0 ts
max fts : ∑

e∈δ−(v)

fe − ∑
e∈δ+(v)

fe = 0∀v ∈ V(G) 0 ≤ f ≤ u

Todo: Analyze the SLC of  for some edge . Recall: the segments of  correspond to edges
        of the flow polytope. Edges of the flow polytope correspond to cycles in the graph.

f 𝔪
e e f 𝔪

e

e
e

There are only two types of circuits involving the edge :e
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Cycles involving the arc e
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Cycles not involving the arc e

df 𝔪
e (g)
dg

= 0df 𝔪
e (g)
dg

= 1



SLC for maximum flow
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Cycles not involving the arc e
e

e

df m
e (g)
dg

= 0

df m
e (g)
dg

= 1

Cycles involving the arc e

⇒

g

f 𝔪
e

df m
e (g)
dg

= 1

df m
e (g)
dg

= 0

⇒ SLC( f 𝔪
e ) ≤ 2

Instance: directed graph , capacities , special arc 
Goal:        , 

G = (V, E) u : E → ℝ≥0 ts
max fts : ∑

e∈δ−(v)

fe − ∑
e∈δ+(v)

fe = 0∀v ∈ V(G) 0 ≤ f ≤ u

Todo: Analyze the SLC of  for some edge . Recall: the segments of  correspond to edges
        of the flow polytope. Edges of the flow polytope correspond to cycles in the graph.

f 𝔪
e e f 𝔪

e



The Zoo of LP subclasses

LP

Combinatorial LP:       integral,A ∥A∥∞ = 2O(poly(n))

Klee-Minty cubes

Markov Decision 
Processes?

• Primal Feasibility of MCGF
• Dual Feasibility of MCGF
• Discounted Markov 

Decision Processes (MDP)

Specialized Interior Point Methods are strongly polynomial

Strongly polynomial (known before 2022)
LP in small dimension n = O(log2(m)/log log m)

Shortest Path 

Input: weighted directed graph ,   , 
distinct vertex 
Task: Find a shortest directed path from  to all other vertices 

Strongly Polynomial: Bellman-Ford

G = (V, E) w : E → ℝ
s

s
v ∈ V

s

2
10

2
1

6

1

-51
-2

1

1

1 -4
1

1
2

-2
2

3

0

4
Bipartite Matching

Input: weighted directed bipartite graph  with 
vertex partition  and edge weights 
Task: Find a matching  that maximizes the weight 

Strongly Polynomial: Hungarian Method, …

G = (V, E)
V = A ∪ B w : E → ℝ

M
w(M) = ∑

e∈M

we

A

B

Maximum Flow
Input: capacitated directed graph , capacities 

 , distinct vertices , t 
Task: Find a maximum flow  from  to , that is maximize  

subject to:  for all  and  for 

all 
Strongly Polynomial: Edmonds Karp, …

G = (V, E)
c : E → ℝ+ s

f s t ∑
e∈δ+(s)

fe

0 ≤ fe ≤ ce e ∈ E ∑
e∈δ−(v)

fe − ∑
e∈δ+(v)

fe = 0

v ∈ V∖{s, t}
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Minimum-cost flow
Input: weighted directed graph , cost  , node 
demands 
Task: Find a flow  that minimizes  subject to:

•Non-negativity:  for all 

•Fulfilled node demands:   for all  

G = (V, E) c : E → ℝ
b : V → ℝ

f ⟨c, f⟩
fe ≥ 0 e ∈ E

∑
e∈δ−(v)

fe − ∑
e∈δ+(v)

fe = bv v ∈ V(G)
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Multi-commodity flow
Input: weighted directed graph , cost  , node demands ,  capacities 
Task: Find a flows  and  that minimizes  subject to:

•Non-negativity: , respect capacities:  

•Fulfill node demands:   for all  and  

Strongly Polynomial: Tardos ‘86

G = (V, E) c : E → ℝ b1 : V → ℝ b2 : V → ℝ u ∈ ℝV

f1 f2 ⟨c, f1 + f2⟩
f1 ≥ 0, f2 ≥ 0 f1 + f2 ≤ u

∑
e∈δ−(v)

fie − ∑
e∈δ+(v)

fie = biv v ∈ V(G) i = 1,2

• Shortest Path
• Bipartite Matching
• Maximum flow

• Minimum-cost flow
• Multi-commodity flow

Lattice polytopes

Vertices of polytope  are in  for some fixed P = {x : Ax = b, x ≥ 0} {0,1,…, k}d k

Combinatorial LP

 integral, A ∥A∥∞ = 2O(poly(n))

Maximum generalized flow

Every column in  has exactly two non-zeros: -1 and  for some 
Objective is  ,i.e., the in-flow to a vertex .

Strongly polynomial: Végh’13

A γ γ > 0
∑

e∈δ−(t)

fe t

2-variable-per-inequality feasibility systems

Find feasible solutions to , where each row of  
has at most 2 non-zeros

Ax ≥ b A

Discounted Markov Decision Processes (MDP)

Given: state space . Every state  has an action space . 
Every action  has a reward  and a probability distribution  on the next state, fixed discount 

discount factor .

Task: maximize the expected total reward .       Strongly polynomial: Ye’05

𝒮 s ∈ 𝒮 𝒜(s)
a ∈ 𝒜(s) ra pa : 𝒮 → [0,1]

γ∞

∑
i=0

γiri

LP in small dimension 

Strongly polynomial: Combination of Clarkson’s algorithm and Randomized Simplex [e.g. Kalai] 

n = O(log2 m/log log m)Klee-Minty cubes

Allamigeon - Gaubert - Vandame ’22
“No self-concordant barrier is 

strongly polynomial”

Discounted Markov Decision Processes (MDP)

Given: state space . Every state  has an action space . 
Every action  has a reward  and a probability distribution  on the next state, fixed discount 

discount factor .   Undiscounted 

Task: maximize the expected total reward .     

𝒮 s ∈ 𝒮 𝒜(s)
a ∈ 𝒜(s) ra pa : 𝒮 → [0,1]

γ γ = 1∞

∑
i=0

γiri

Minimum cost generalized flow

,   (MCGF)min⟨c, x⟩ : ∑
e∈δ−(i)

γexe − ∑
e∈δ+(i)

xe = bi, ∀i ∈ [n] x ≥ 0

MCGF



Our Road to solve the MCGF problem

Discrete Newton Method (DN) is strongly polynomial for dual feasibility- Dadush, Koh, N., Végh ’20
First combinatorial dual feasibility algorithm.

Question: Find a more combinatorial/structured algorithm that solves 2VPI? (Somewhen in 2019)

“A Simpler and Faster Strongly Polynomial Algorithm for Generalized Flow Maximization” - Olver, Végh  
STOC ’17, JACM ’20. Fastest/Cleanest (combinatorial) primal feasibility algorithm

Question: Combine combinatorial primal 
feasibility and dual feasibility algorithms 

to tackle optimization MCGF problem?

Question: IPM are usually most efficient methods for LP. Is 
there an IPM with running time  …even Simplex does it.f(m, n)

Allamigeon, Dadush, Loho, N., Végh ’22 : Yes, . 
“IPM are not worse than Simplex”

f(m, n) = 2O(m)

No progress :(

Question: Are IPM strongly polynomial for MCGF?Yes :)



Circuits

… of linear subspaces…



Circuits in simple graphs
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Circuits in undirected graphs Circuits in directed graphs

A =

−1 −1 0 0 0 0
1 0 −1 0 0 0
0 0 1 1 −1 0
0 0 0 0 1 1
0 1 0 −1 0 −1

A =

1 1 0 0 0 0
1 0 1 0 0 0
0 0 1 1 1 0
0 0 0 0 1 1
0 1 0 1 0 1

Circuits in general are vectors  s.t.  and x Ax = 0 ∄y ≠ 0 : Ay = 0, supp(y) ⊊ supp(x)



Circuits in generalized flows
LP:     ,   variables, constraintsmin⟨c, x⟩ : Ax = b, x ≥ 0 m

Circuits in general are vectors  s.t.  and x Ax = 0 ∄y ≠ 0 : Ay = 0, supp(y) ⊊ supp(x)    

 For generalized flow: support-minimal vectors  such thatx ∑
e∈δ−(i)

γixe − ∑
e∈δ+(i)

xe = 0, ∀i ∈ [n]

γ1

γ2

C

γ(C) := ∏
e∈E(C)

γe

A cycle is a circuit 
iff γ(C) = 1

γ3 γ4

C−γ1

γ2

C+

γ(C+) > 1

γ(C−) < 1

“Bicycles”

“Flow conserving cycle”



Small circuit cover for MCGF

γ1

γ2

C+

γ(C+) > 1

γ3

γ4

C−

γ(C−) < 1

“Bicycles”
γ1

γ2

C

γ(C) := ∏
e∈E(C)

γe

A cycle is a circuit iff 
γ(C) = 1

“Flow conserving cycle”

Theorem (Dadush, Koh, N., Olver, Végh ’24+):
In the extended residual graph induced by the optimal solution , there exists a collection of 

 bicycles and flow conserving cycles that dominates all other bicycles and flow conserving cycles.
x*

O(mn)



Path covers
Combinatorial problem: Given a directed graph 

 where edges have G = (V, E)

t
0.1, 2, 3

Question 1: Is there an -  walk  of length 
 such that

• gain(W) :=  is maximum 

• capacity(W) := flow sent to  without 
violating capacities is maximum

• cost(W) := cost per unit of flow sent to  is 
minimum ?   

s t W
≤ n

∏
e∈W

γ(e)

t

t

capacitiesgains cost

3, 2, 01.2, 4, 5

Question 3: Is there a collection ,  of -  walks  of length  such 
that for any -  walk  of length  there exists  s.t.
 (gain( ), capacity( ), 1/cost( ))  poly(m) (gain( ), capacity( ), 1/cost( ))?

𝒲 |𝒲 | = poly(m) s t W ≤ poly(m)
s t W ≤ n W* ∈ 𝒲

W W W ≤ W* W* W*

Question 2: Is there a collection ,  of -  walks  of length  such that 
for any -  walk  of length  there exists  s.t.
 (gain( ), capacity( ), 1/cost( ))  (gain( ), capacity( ), 1/cost( ))?

𝒲 |𝒲 | = poly(m) s t W ≤ n
s t W ≤ n W* ∈ 𝒲

W W W ≤ W* W* W*

s

No!

No!

Yes!



Our result

Theorem (Allamigeon, Dadush, Loho, N., Végh ’22):
Given a suitable initial point, there exists an IPM that solves an LP in strongly polynomial 
many iterations if for all variables  we have that  = .i ∈ [m] SLC(x𝔪

i ) O(poly(m, n))

Theorem (Dadush, Koh, N., Olver, Végh ’24+):
For every edge  we have that , .e ∈ E(G) SLC(x𝔪

e ) = O(mn log(mn))

=
Initialized algorithm with strongly polynomially many iterations for minimum cost generalized flow

+

⇓ …a lot of extra effort…

Question 3: Is there a collection ,  of -  walks  of length  such 
that for any -  walk  of length  there exists  s.t.
 (gain( ), capacity( ), 1/cost( ))  poly(m) (gain( ), capacity( ), 1/cost( ))?

𝒲 |𝒲 | = poly(m) s t W ≤ poly(m)
s t W ≤ n W* ∈ 𝒲

W W W ≤ W* W* W* Yes!



Initialization
…usually an afterthought…



Why standard initialization techniques have a hard time

Approach 2: Homogeneous self-dual initialization (Ye-Todd-Mizuno’94)

Approach 1: A large bounding box around the feasible region

Primal:       Dual:   min⟨c, x⟩ : Ax = b, x ≥ 0, A ∈ ℝn×m max⟨y, b⟩ : A⊤y ≤ c

Problem of Approaches 1 + 2: The introduction of new constraints and variables modifies the matrix structure so that the 
systems does not have 2 nonzero entries per column anymore.

Theorem (Ye-Todd-Mizuno ‘94):
The system on the left can be initialized 
on the central path and its optimal 
solution is exactly the optimal solution of 
the original system 

Problem of Approaches 1: How large has the box to be chosen? The computation model does not allow to access the bit 
complexity of the numbers in the input.



Multistage initialization

Stage 1: Conic feasibility

Primal:       Dual:   min⟨c, x⟩ : Ax = b, x ≥ 0, A ∈ ℝn×m max⟨y, b⟩ : A⊤y ≤ c

Solve :   min⟨1, x̄⟩ : Ax − Ax̄ = 0, 0 ≤ x ≤ 1, x̄ ≥ 0
Theorem: (Allamigeon, Dadush, Loho, N., 
Végh ’22):
There exists an IPM that finds an optimal 
solution  to an LP in strongly polynomial 
time iff for all variables  we have that 

 = .
Furthermore,  is near the analytic center 
of the optimal facet.

x*
i ∈ [m]

SLC(x𝔪
i ) O(poly(m, n))

x*

  obtain  such that  and ⇒ x* x* > 0 Ax* = 0

Stage 2: Dual feasibility

Solve : . Initialize with   min⟨c, x⟩ : Ax = 0, 0 ≤ x ≤ 1 x*

Dual :   min⟨1, z⟩ : A⊤y − z ≤ c, z ≥ 0

  the set of dual solutions with objective value 0 correponds to feasible solutions of original LP⇒

  obtain  as solution near the analytic center of the original dual system.⇒ y*

Stage 3: Primal-dual optimization: Use  to initialize the original system.y*

Note: In all stages 
the modification of 

the constraint matrix 
is “harmless”. 



Future theory directions

•Combinatorial strongly polynomial time algorithm for minimum-cost generalized flow? 

With improved running time?

•What is the true cost of making weakly polynomial algorithms strongly polynomial?

•How hard are Markov Decision Processes (MDP)?

•Why do IPM perform so well in practice?

•Universal exact methods for more general convex problems? Convex quadratic?

Thank you!Strongly poly for general LP?


