A strongly polynomial algorithm for linear programs with at most two non-zero entries per row or column

Bento Natura
MIP Workshop 2024

Joint work with Daniel Dadush, Zhuan Khye Koh, Neil Olver, and László Végh

Linear Programming (LP)

$$
\min \langle c, x\rangle: A x=b, x \geq 0, \quad A \in \mathbb{R}^{n \times m}
$$

LP can be solved in time poly $(m, \operatorname{size}(A, b, c))$ (Khachiyan '79 (Ellipsoid Method), Karmarkar '84 (Interior Point Methods),...

Is there a strongly polynomial algorithm for LP? ...i.e. an algorithm with running time poly (m)...

Dadush, Koh, N., Olver, Végh '24:
There exists a strongly polynomial time algorithm for LP with at most two nonzero entries per column.

The minimum-cost generalized flow problem

Primal: $\min \langle c, x\rangle: A x=b, x \geq 0$ Dual: $\max \langle y, b\rangle: A^{\top} y \leq c$

Primal: $\quad \min \langle c, x\rangle: \sum_{e \in \delta^{-}(i)} \gamma_{e} x_{e}-\sum_{e \in \delta^{+}(i)} x_{e}=b_{i}, \forall i \in[n], \quad x \geq 0$
Dual: $\quad \max \langle y, b\rangle: \gamma_{e} y_{j}-y_{i} \leq c_{e} \quad \forall e=(i, j)$

Hochbaum '04: LP with 2 variables per column can be reduced to minimum-cost generalized flow

Prior strongly polynomial special cases $\min \left\{(, x\rangle: \sum_{c \in \sigma^{-(1)}} \gamma x_{e}-\sum_{c \in \sigma^{+}(0)} x_{c}=b_{0} \forall i \in[n], x \geq 0 \quad\right.$ (MCGF)

Special gains γ

- $\gamma \equiv 1 \Rightarrow$ Minimum cost flow problem
$\Rightarrow \quad$ Tardos '85
- $\gamma \in \mathbb{Z}^{m}$ and $\log \left(\|\gamma\|_{\infty}\right)=O(\operatorname{poly}(m))$
$\Rightarrow \quad$ Tardos ${ }^{\prime} 86$

Dual feasibility

- First strongly polynomial algorithm: Seminal work by Megiddo ' 83 introducing parametric search technique (Meta algorithm, binary search on steroids)
- Hochbaum-Naor '94: $\tilde{O}\left(m n^{2}\right)$ fastest deterministic

Primal feasibility

- Végh '13: $\tilde{O}\left(m^{2} n^{3}\right)$ answering longstanding open question
- Olver, Végh '20: "Simpler and faster" now in $\tilde{O}\left(m^{2} n\right)$
- First algorithm not relying on parametric search: Dadush, Koh, N. and Végh '21: usage of Discrete Newton method

Our Road to solve the MCGF problem

"A Simpler and Faster Strongly Polynomial Algorithm for Generalized Flow Maximization" - Olver, Végh

 STOC '17, JACM '20. Fastest / Cleanest (combinatorial) primal feasibility algorithm\downarrow
Question: Find a more combinatorial/structured algorithm that solves 2VPI? (Somewhen in 2019)
Discrete Newton Method (DN) is strongly polynomial for dual feasibility-Dadush, Koh, N., Végh '20 First combinatorial dual feasibility algorithm.

Question: Combine combinatorial primal feasibility and dual feasibility algorithms to tackle optimization MCGF problem?

Question: IPM are usually most efficient methods for LP. Is there an IPM with running time $f(m, n)$?

Predictor - Corrector Path Following

Mizuno-Todd-Ye ‘93

- Given x^{0} in 'neighborhood' around $x_{\mu_{0}}$ for some $\mu_{0}>0$
- Compute iterates x^{1}, \ldots, x^{t} by alternating between
- Predictor steps: decrease μ by moving 'down' the central path
- Corrector steps: move back 'closer' to the central path for the same μ (Newton step).

Each iteration takes $O(1)$ linear system solves
Standard analysis: Decrease μ by a factor of 2 in $O(\sqrt{m})$ iterations

Prior Exact Interior Point Methods

$$
\min \langle c, x\rangle: A x=b, x \geq 0, m \text { variables, } n \text { equalities }
$$

Layered-least-squares (LLS)

Vavasis-Ye '96, Monteiro-Tsuchiya '03 - '05,

Trust-region based IPM
Lan-Monteiro-Tsuchiya '09

Scaling-invariant LLS
Dadush-Huiberts-N.-Végh ‘20

Straight Line Complexity

Optimality gap g

The max central path

$$
\min \langle c, x\rangle: A x=b, x \geq 0, \quad A \in \mathbb{R}^{n \times m}, P:=\{x: A x=b, x \geq 0\}
$$

For any variable $i \in[m] \ldots$

- Breakpoints of x_{i}^{m} correspond to vertices of P
- Line segments of $x_{i}^{\mathfrak{m}}$ correspond to edges of P

$$
x_{i}^{\mathrm{m}}(g) \text { is: }
$$

- Concave
- Monotone increasing
- Piecewise linear
$\bullet \#$ pieces $\leq \min (\#$ edges of P, \# vertices of P)

Straight line complexity

LP: $\quad \min \langle c, x\rangle: A x=b, x \geq 0, \quad x_{i}^{\mathfrak{m}}(g):=\max \left\{x_{i}: A x=b,\langle c, x\rangle-\mathrm{OPT} \leq g, x \geq 0\right\}$
m variables, n constraints
$x_{i}^{\mathrm{m}}(g)$

Theorem (Allamigeon, Dadush, Loho, N., Végh '22):
Given a suitable initial point, there exists an IPM that solves an LP in strongly polynomial many iterations if for all variables $i \in[m]$ we have that $\operatorname{SLC}\left(x_{i}^{\mathfrak{m} \mathfrak{m}}\right)=O(\operatorname{poly}(m, n))$.

SLC for maximum flow

Instance: directed graph $G=(V, E)$, capacities $u: E \rightarrow \mathbb{R}_{\geq 0}$, special arc $t s$
Goal: $\quad \max f_{t s}: \sum_{e \in \delta^{-}(v)} f_{e}-\sum_{e \in \delta^{+}(v)} f_{e}=0 \forall v \in V(G), \mathbf{0} \leq f \leq u$
Todo: Analyze the SLC of $f_{e}^{\mathfrak{m}}$ for some edge e. Recall: the segments of $f_{e}^{\mathfrak{m}}$ correspond to edges of the flow polytope. Edges of the flow polytope correspond to cycles in the graph.
There are only two types of circuits involving the edge e:

Cycles involving the arc e

Cycles not involving the $\operatorname{arc} e$

SLC for maximum flow

Instance: directed graph $G=(V, E)$, capacities $u: E \rightarrow \mathbb{R}_{\geq 0}$, special arc $t s$
Goal: $\quad \max f_{t s}: \sum_{e \in \delta^{-}(v)} f_{e}-\sum_{e \in \delta^{+}(v)} f_{e}=0 \forall v \in V(G), \mathbf{0} \leq f \leq u$
Todo: Analyze the SLC of f_{e}^{m} for some edge e. Recall: the segments of f_{e}^{m} correspond to edges of the flow polytope. Edges of the flow polytope correspond to cycles in the graph.

Cycles involving the arc e

Cycles not involving the arc e

$$
\frac{d f_{e}^{m}(g)}{d g}=0
$$

The Zoo of LP subclasses

Strongly polynomial (known before 2022)

$$
\text { LP in small dimension } n=O\left(\log ^{2}(m) / \log \log m\right)
$$

Specialized Interior Point Methods are strongly polynomial
Combinatorial LP: $\quad A$ integral, $\|A\|_{\infty}=2^{O(\text { poly }(n))}$

- Shortest Path
- Bipartite Matching
- Maximum flow
- Minimum-cost flow
- Multi-commodity flow
- Primal Feasibility of MCGF
- Dual Feasibility of MCGF
- Discounted Markov

Decision Processes (MDP)

Klee-Minty cubes
Markov Decision
Processes?

MCGF

Minimum cost generalized flow

$$
\min \langle c, x\rangle: \sum_{e \in \delta^{-}(i)} \gamma_{e} x_{e}-\sum_{e \in \delta^{+}(i)} x_{e}=b_{i}, \forall i \in[n], \quad x \geq 0(\mathrm{MCGF})
$$

Our Road to solve the MCGF problem

"A Simpler and Faster Strongly Polynomial Algorithm for Generalized Flow Maximization" - Olver, Végh

 STOC '17, JACM '20. Fastest / Cleanest (combinatorial) primal feasibility algorithmQuestion: Find a more combinatorial/structured algorithm that solves 2VPI? (Somewhen in 2019)
Discrete Newton Method (DN) is strongly polynomial for dual feasibility- Dadush, Koh, N., Végh '20 First combinatorial dual feasibility algorithm.

Question: Combine combinatorial primal feasibility and dual feasibility algorithms to tackle optimization MCGF problem?

Question: IPM are usually most efficient methods for LP. Is there an IPM with running time $f(m, n)$...even Simplex does it. \downarrow

Allamigeon, Dadush, Loho, N., Végh '22 : Yes, $f(m, n)=2^{O(m)}$. "IPM are not worse than Simplex"

Circuits

... of linear subspaces...

Circuits in simple graphs

Circuits in general are vectors x s.t. $A x=0$ and $\nexists y \neq \mathbf{0}: A y=0, \operatorname{supp}(y) \subsetneq \operatorname{supp}(x)$

Circuits in undirected graphs

Circuits in directed graphs

$$
A=\left[\begin{array}{cccccc}
-1 & -1 & 0 & 0 & 0 & 0 \\
1 & 0 & -1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & -1 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & -1 & 0 & -1
\end{array}\right]
$$

Circuits in generalized flows

LP: $\quad \min \langle c, x\rangle: A x=b, x \geq 0, m$ variables, constraints
Circuits in general are vectors x s.t. $A x=0$ and $\nexists y \neq \mathbf{0}: A y=0, \operatorname{supp}(y) \subsetneq \operatorname{supp}(x)$
For generalized flow: support-minimal vectors x such that $\sum_{e \in \delta^{-}(i)} \gamma_{i} x_{e}-\sum_{e \in \delta^{+}(i)} x_{e}=0, \forall i \in[n]$

Small circuit cover for MCGF

Theorem (Dadush, Koh, N., Olver, Végh '24+):
In the extended residual graph induced by the optimal solution x^{*}, there exists a collection of $O(\mathrm{mn})$ bicycles and flow conserving cycles that dominates all other bicycles and flow conserving cycles.

Path covers

Combinatorial problem: Given a directed graph $G=(V, E)$ where edges have gains capacities cost

Question 1: Is there an s - t walk W of length $\leq n$ such that

- gain $(\mathrm{W}):=\prod \gamma(e)$ is maximum
- capacity $(W):=$ flow sent to t without violating capacities is maximum
- $\operatorname{cost}(\mathrm{W}):=$ cost per unit of flow sent to t is minimum ?

No!

Question 2: Is there a collection $\mathscr{W},|\mathscr{W}|=\operatorname{poly}(m)$ of s - t walks W of length $\leq n$ such that for any s - t walk W of length $\leq n$ there exists $W^{*} \in \mathscr{W}$ s.t. (gain $(W), \operatorname{capacity}(W), 1 / \operatorname{cost}(W)) \leq\left(\operatorname{gain}\left(W^{*}\right), \operatorname{capacity}\left(W^{*}\right), 1 / \operatorname{cost}\left(W^{*}\right)\right)$?

Question 3: Is there a collection $\mathscr{W},|\mathscr{W}|=\operatorname{poly}(m)$ of $s-t$ walks W of length $\leq \operatorname{poly}(m)$ such that for any s - t walk W of length $\leq n$ there exists $W^{*} \in \mathscr{W}$ s.t. $(\operatorname{gain}(W), \operatorname{capacity}(W), 1 / \operatorname{cost}(W)) \leq \operatorname{poly}(m)\left(\operatorname{gain}\left(W^{*}\right), \operatorname{capacity}\left(W^{*}\right), 1 / \operatorname{cost}\left(W^{*}\right)\right)$?

Our result

Question 3: Is there a collection $\mathscr{W},|\mathscr{W}|=\operatorname{poly}(m)$ of s - t walks W of length $\leq \operatorname{poly}(m)$ such that for any s - t walk W of length $\leq n$ there exists $W^{*} \in \mathscr{W}$ s.t. $(\operatorname{gain}(W), \operatorname{capacity}(W), 1 / \operatorname{cost}(W)) \leq \operatorname{poly}(\mathrm{m})\left(\operatorname{gain}\left(W^{*}\right), \operatorname{capacity}\left(W^{*}\right), 1 / \operatorname{cost}\left(W^{*}\right)\right)$? Yes!
\Downarrow...a lot of extra effort...
Theorem (Dadush, Koh, N., Olver, Végh '24+):
For every edge $e \in E(G)$ we have that , $\operatorname{SLC}\left(x_{e}^{\mathfrak{m}}\right)=O(m n \log (m n))$.

$$
+
$$

Theorem (Allamigeon, Dadush, Loho, N., Végh '22):
Given a suitable initial point, there exists an IPM that solves an LP in strongly polynomial many iterations if for all variables $i \in[m]$ we have that $\operatorname{SLC}\left(x_{i}^{\mathfrak{m}}\right)=O(\operatorname{poly}(m, n))$.

Initialization

...usually an afterthought...

Why standard initialization techniques have a hard time

Primal: $\min \langle c, x\rangle: A x=b, x \geq 0, \quad A \in \mathbb{R}^{n \times m} \quad$ Dual: $\max \langle y, b\rangle: A^{\top} y \leq c$
Approach 1: A large bounding box around the feasible region

Problem of Approaches 1: How large has the box to be chosen? The computation model does not allow to access the bit complexity of the numbers in the input.

Approach 2: Homogeneous self-dual initialization (Ye-Todd-Mizuno'94)

min			($n+$		
s.t. $\begin{gathered} -A^{\top} y \\ b^{\top} y \\ -\bar{b}^{\top} y \\ y \text { free, } \end{gathered}$	$\begin{aligned} & +A x \\ & -c^{\top} x \\ & +\bar{c}^{\top} x \\ & x \geq 0 \end{aligned}$	$\begin{aligned} & -b \tau \\ & +c \tau \\ & -\bar{z} \tau \\ & \tau \geq 0, \end{aligned}$	$\begin{aligned} & +\bar{b} \theta \\ & -\bar{c} \theta \\ & +\bar{z} \theta \\ & \theta \text { free. } \end{aligned}$	$\begin{aligned} & =\mathbf{0}, \\ & \geq \mathbf{0}, \\ & \geq \mathbf{0}, \\ & =-(n+1), \end{aligned}$	Theorem (Ye-Todd-Mizuno '94): The system on the left can be initialized on the central path and its optimal solution is exactly the optimal solution of the original system

Problem of Approaches $1+2$: The introduction of new constraints and variables modifies the matrix structure so that the systems does not have 2 nonzero entries per column anymore.

Multistage initialization

Primal: $\min \langle c, x\rangle: A x=b, x \geq \mathbf{0}, \quad A \in \mathbb{R}^{n \times m} \quad$ Dual: $\max \langle y, b\rangle: A^{\top} y \leq c$

Stage 1: Conic feasibility

Solve : $\min \langle\mathbf{1}, \bar{x}\rangle: A x-A \bar{x}=\mathbf{0}, \mathbf{0} \leq x \leq \mathbf{1}, \bar{x} \geq \mathbf{0}$
\Rightarrow obtain x^{*} such that $x^{*}>\mathbf{0}$ and $A x^{*}=\mathbf{0}$

Stage 2: Dual feasibility

Solve : $\min \langle c, x\rangle: A x=\mathbf{0}, \mathbf{0} \leq x \leq \mathbf{1}$. Initialize with x^{*}
Dual : $\min \langle\mathbf{1}, z\rangle: A^{\top} y-z \leq c, z \geq \mathbf{0}$
\Rightarrow the set of dual solutions with objective value 0 correponds to feasible solution
\Rightarrow obtain y^{*} as solution near the analytic center of the original dual system.
Stage 3: Primal-dual optimization: Use y^{*} to initialize the original system.

Theorem: (Allamigeon, Dadush, Loho, N., Végh '22):
There exists an IPM that finds an optimal solution x^{*} to an LP in strongly polynomial time iff for all variables $i \in[m]$ we have that $\operatorname{SLC}\left(x_{i}^{\mathrm{m}}\right)=O(\operatorname{poly}(m, n))$. Furthermore, x^{*} is near the analytic center of the optimal facet.

Note: In all stages the modification of the constraint matrix is "harmless".

Future theory directions

- Combinatorial strongly polynomial time algorithm for minimum-cost generalized flow? With improved running time?
- What is the true cost of making weakly polynomial algorithms strongly polynomial?
- How hard are Markov Decision Processes (MDP)?
- Why do IPM perform so well in practice?
- Universal exact methods for more general convex problems? Convex quadratic?

