

Department of Decision Sciences

Large-scale Optimization Methods for Logical Reasoning: A Novel Perspective

Maryam Daryalal

MIP Workshop

June 2024

Outline

• Problem Description

• Solution Methodology

• Results & Conclusion

Introduction

M. Daryalal

Large-scale Optimization for Logical Reasoning

HEC MONTREAL

- **>** Description Logics (\mathcal{DL}) are a family of formal knowledge representation languages.
- Used to represent the knowledge of an application domain in a structured and formal way.
- Provides a mechanism for encoding semantics of a domain and reasoning about it.

HEC MONTREAL

- Description Logics (DL) are a family of formal knowledge representation languages.
- Used to represent the knowledge of an application domain in a structured and formal way.
- Provides a mechanism for encoding semantics of a domain and reasoning about it.

Checking satisfiability; classification; answering queries

HEC MONTREAL

- Description Logics (\mathcal{DL}) are a family of formal knowledge representation languages.
- Used to represent the knowledge of an application domain in a structured and formal way.
- Provides a mechanism for encoding semantics of a domain and reasoning about it.

Checking satisfiability; classification; answering queries

It serves as a foundation for implementing ontologies and semantic web technologies

HEC MONTREAL

- Description Logics (\mathcal{DL}) are a family of formal knowledge representation languages.
- Used to represent the knowledge of an application domain in a structured and formal way.
- Provides a mechanism for encoding semantics of a domain and reasoning about it.

Checking satisfiability; classification; answering queries

It serves as a foundation for implementing ontologies and semantic web technologies

Used to define a formal representation of

a domain using concepts and relationships.

HEC MONTREAL

- ▶ Description Logics (DL) are a family of formal knowledge representation languages.
- Used to represent the knowledge of an application domain in a structured and formal way.
- Provides a mechanism for encoding semantics of a domain and reasoning about it.

Checking satisfiability; classification; answering queries

It serves as a foundation for implementing ontologies and semantic web technologies

Used to define a formal representation of

a domain using concepts and relationships.

An extension of the traditional Web, enables computers to understand web data, using ontologies.

- OWL (Web Ontology Language): A language for defining and instantiating Web ontologies.
 - OWL uses \mathcal{DL} to provide semantics for complex ontologies.
 - OWL \mathcal{DL} is compatible with existing Web standards, e.g., HTTP, XML, RDF, RDFS

- HEC MONTREAL
- ► OWL (Web Ontology Language): A language for defining and instantiating Web ontologies.
 - OWL uses \mathcal{DL} to provide semantics for complex ontologies.
 - OWL \mathcal{DL} is compatible with existing Web standards, e.g., HTTP, XML, RDF, RDFS
 - $\rightarrow~\mathcal{DL}$ provides a theoretical basis for semantic reasoning on the Web.

- HEC MONTREAL
- OWL (Web Ontology Language): A language for defining and instantiating Web ontologies.
 - OWL uses \mathcal{DL} to provide semantics for complex ontologies.
 - OWL \mathcal{DL} is compatible with existing Web standards, e.g., HTTP, XML, RDF, RDFS
 - $\rightarrow~\mathcal{DL}$ provides a theoretical basis for semantic reasoning on the Web.

Semantic Web: Data is not just structured but also meaningful and machine-understandable.

- HEC MONTREAL
- OWL (Web Ontology Language): A language for defining and instantiating Web ontologies.
 - OWL uses \mathcal{DL} to provide semantics for complex ontologies.
 - OWL \mathcal{DL} is compatible with existing Web standards, e.g., HTTP, XML, RDF, RDFS
 - $\rightarrow~\mathcal{DL}$ provides a theoretical basis for semantic reasoning on the Web.

Semantic Web: Data is not just structured but also meaningful and machine-understandable.

- Why not the existing Web data models? XML? RDF?
 - XML: syntax \checkmark , semantics \times
 - RDF: syntax \checkmark , (basic) semantics \checkmark , reasoning \times
 - OWL $\mathcal{DL}:$ syntax \checkmark , (rich) semantics \checkmark , reasoning \checkmark

A Simple Ontology: Description

Modeling a University domain including entities like Professors, Students, and Courses.

- **Concepts:** Professor, Student, Full-time Student, Part-time Student, Course
- Roles: teaches(Professor, Course), enrolled(Student, Course)
- Axioms:
 - Every Full-time Student is a Student. Every Part-time Student is a Student.
 - A Student is either Full-time Student, or Part-time Student. They cannot be both.
 - Every Full-time Student is enrolled in at least 3 Courses.
 - Every Part-time Student is enrolled in at most 2 Courses.
 - For every Course there exists some Professor teaching it.

A Simple Ontology: \mathcal{DL} Syntax

Modeling a University domain including entities like Professors, Students, and Courses.

- **Concepts:** Professor, Student, Full-time Student, Part-time Student, Course
- Roles: teaches(Professor, Course), enrolled(Student, Course)
- Axioms:
 - Full-time Student \sqsubseteq Student, Part-time Student \sqsubseteq Student
 - Student \sqsubseteq Full-time Student \sqcup Part-time Student, Full-time Student \sqcap Part-time Student $\sqsubseteq \bot$
 - Full-time Student $\sqsubseteq \geq 3 \text{ enrolled}$.Course
 - Part-time Student $\sqsubseteq \leq 2 \text{ enrolled}$.Course
 - Course $\sqsubseteq \exists \texttt{inv}(\texttt{teaches}).\mathsf{Professor}$

A Simple Ontology: Knowledge Graph

A Simple Ontology: Knowledge Graph

 \blacktriangleright OWL \mathcal{DL} can also infer new knowledge \rightarrow reasoning

- \blacktriangleright OWL \mathcal{DL} can also infer new knowledge \rightarrow reasoning
- Let's add two new concepts to our ontology:
 - PhD-Student \sqsubseteq Student
 - Seminar $\sqsubseteq \exists \texttt{inv}(\texttt{enrolled}).\mathsf{PhD-Student}$

- A Simple Ontology: Reasoning
 - \blacktriangleright OWL \mathcal{DL} can also infer new knowledge \rightarrow reasoning
 - Let's add two new concepts to our ontology:
 - PhD-Student \sqsubseteq Student
 - Seminar $\sqsubseteq \exists inv(enrolled).PhD-Student$
 - ▶ We haven't explicitly told the reasoner that a Seminar is a Course. It will infer this.
 - RDF cannot represent the semantics of our ontology. It lacks the vocabulary for disjointedness, cardinality, etc.
 - RDF cannot infer new knowledge.

Added concepts and axiom

Annotatio	n properties	Datatype	s Individuals	😑 😑 Seminar — http://www.semanticweb.org/maryamdaryalal/ontologies/2024/4/University#Seminar				
Classes	Object prope	rties D	Data properties	Annotations Usage				
Class hie	rarchy: Semin	ar	2 🛛 🗖 🗆 🗵	Annotations: Seminar				
1. II.	× ©		Asserted ᅌ	Annotations 🛨				
v – e owl	:Thing Course Professor							
	Seminar			Description: Seminar				
PhD_Student				Equivalent To 🛨				
	Full-time_	Student						
	Part-time_	Student		Subclass Of inverse (enrolled) some PhD_Student				
				General class axioms 🕒				
				SubClass Of (Anonymous Ancestor)				
				Instances 🕀				

Inferences made by the reasoner

Annotation	n properties	Datatype	es Individuals	Seminar — http://www.semanticweb.org/maryamdaryalal/ontologies/2024/4/University#Seminar				
Classes	Object prope	erties	Data properties	Annotations Usage				
Class hier	rarchy: Semin	ar	2 🛛 🗖 🗆 🗙	Annotations: Seminar				
16 16.	× 🔅 🖸		Inferred 😒	Annotations				
	Thing Course Seminar							
	Student			Description: Seminar				
Full-time_Student Part-time_Student				Equivalent To 🕂				
	PhD_Stude	nt		SubClass of inverse (enrolled) some PhD_Student Course				
				General class axioms +				
				SubClass Of (Anonymous Ancestor) inverse (teaches) some Professor				

Explanations provided by the reasoner

Active ontology En		Explanation for Seminar SubClassOf Course
Annotation propertie Classes Object p	Show regular justifications Show laconic justifications	All justifications Limit justifications to
Class hierarchy: Se ℃ IS+ ⊠ €	Explanation 1 Display laconic e	2 🗘
 owl:Thing Course Professor Seminar 	Explanation for: Seminar SubClassOf Co Seminar SubClassOf inver enrolled Range Cours	urse ise (enrolled) some PhD_Student ie
 Student PhD_S Full-ti Part-t 		

Solution Methodology

Constructors & Axioms in \mathcal{DL} ALCQ (I)

HEC MONTREA

• An interpretation: $\mathcal{I} = (\Delta^{\mathcal{I}}, .^{\mathcal{I}})$, with $\Delta^{\mathcal{I}}$ a non-empty domain set and $.^{\mathcal{I}}$ a mapping.

Thing	Т	≡	$\top^{\mathcal{I}} = \Delta^{\mathcal{I}}$
Nothing	\perp	≡	$\bot^{\mathcal{I}} = \emptyset$
Concept (class)	A	≡	$A^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}}$
Concept assertion	a:C	≡	$a^{\mathcal{I}} \in C^{\mathcal{I}}$
Negation	$\neg C$	≡	$\Delta^{\mathcal{I}} \setminus C^{\mathcal{I}}$
Conjunction	$C\sqcap D$	≡	$C^{\mathcal{I}} \cap D^{\mathcal{I}}$
Disjunction	$C\sqcup D$	≡	$C^{\mathcal{I}} \cup D^{\mathcal{I}}$
Subsumption	$C \sqsubseteq D$	≡	$C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$

Constructors & Axioms in \mathcal{DL} ALCQ (II)

• An interpretation: $\mathcal{I} = (\Delta^{\mathcal{I}}, .^{\mathcal{I}})$, with $\Delta^{\mathcal{I}}$ a non-empty domain set and $.^{\mathcal{I}}$ a mapping.

Role (relationship)

Role assertion

Universal restriction

At-least qualified cardinality restriction

At-most qualified cardinality restriction

Role hierarchy

Transitive role

 $R \equiv R^{\mathcal{I}} \subset \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$ $(a,b): R \equiv (a^{\mathcal{I}}, b^{\mathcal{I}}) \in R^{\mathcal{I}}$ $\forall R.C \equiv \{x | \forall y : (x, y) \in R^{\mathcal{I}} \Rightarrow y \in C^{\mathcal{I}} \}$ $> nR.C \equiv \{x \mid \# R^{\mathcal{I}}(x, C) > n\}$ $< mR.C \equiv \{x \mid \#R^{\mathcal{I}}(x, C) < m\}$ $R \sqsubset S \equiv R^{\mathcal{I}} \subseteq S^{\mathcal{I}}$ $R \in \mathcal{N}_{RT} \equiv R^{\mathcal{I}} = (R^{\mathcal{I}})^+$

Problem Description

The Satisfiability Problem in \mathcal{DL} Ontologies

HEC MONTRĒAL

The SAT Problem

Given an ontology \mathcal{O} written in a Description Logic \mathcal{L} , and a concept C, is there a model \mathcal{I} of \mathcal{O} where $C^{\mathcal{I}} \neq \emptyset$?

- \blacktriangleright Does there exist an interpretation that satisfies all axioms in \mathcal{O} and where C is non-empty?
- Ontology axioms constrain possible *I*s, potentially making a concept unsatisfiable.

The Satisfiability Problem in \mathcal{DL} Ontologies

HEC MONTREAL

The SAT Problem

Given an ontology \mathcal{O} written in a Description Logic \mathcal{L} , and a concept C, is there a model \mathcal{I} of \mathcal{O} where $C^{\mathcal{I}} \neq \emptyset$?

- **>** Does there exist an interpretation that satisfies all axioms in \mathcal{O} and where C is non-empty?
- Ontology axioms constrain possible \mathcal{I} s, potentially making a concept unsatisfiable.

Example:

- Full-time Student \sqsubseteq Student
- Professor $\sqsubseteq \neg$ Student (Professors are not Students)
- Is Professor \sqcap Full-time Student satisfiable? No \rightarrow Professor \sqcap Full-time Student $\sqsubseteq \bot$

The Challenge of Qualified Cardinality Restrictions (QCRs)

- ▶ QCRs are expressive, but computationally challenging for reasoning algorithms.
- Reasoning with QCRs:
 - Tableaux algorithms: Introduce or merge individuals to satisfy cardinality constraints.
 - Example: For Person $\sqsubseteq \geq 2hasChild.Student$:
 - \circ Start with individual 'a: Person', 'a: ($\geq 2hasChild.Student$)'
 - \circ Introduce 'b1, b2 : Student' such that <code>hasChild(a,b1)</code>, <code>hasChild(a,b2)</code>
 - Challenges: Non-determinism, exponential complexity.

The Challenge of Qualified Cardinality Restrictions (QCRs)

- Mo
- QCRs are expressive, but computationally challenging for reasoning algorithms.
- Reasoning with QCRs:
 - Tableaux algorithms: Introduce or merge individuals to satisfy cardinality constraints.
 - Example: For Person $\sqsubseteq \geq 2hasChild.Student$:
 - Start with individual 'a: Person', 'a: $(\geq 2hasChild.Student)$ '
 - \circ Introduce 'b1, b2 : Student' such that <code>hasChild(a,b1), hasChild(a,b2)</code>
 - Challenges: Non-determinism, exponential complexity.
 - Reduction to other problems \rightarrow Feasibility problem: Given a set of constraints \mathcal{T} , does there exist a solution x that satisfies all constraints in \mathcal{T} ?

The Challenge of Qualified Cardinality Restrictions (QCRs)

- QCRs are expressive, but computationally challenging for reasoning algorithms.
- Reasoning with QCRs:
 - Tableaux algorithms: Introduce or merge individuals to satisfy cardinality constraints.
 - Example: For Person $\sqsubseteq \geq 2hasChild.Student$:
 - Start with individual 'a: Person', 'a: $(\geq 2hasChild.Student)$ '
 - \circ Introduce 'b1, b2 : Student' such that hasChild(a, b1), hasChild(a, b2)
 - Challenges: Non-determinism, exponential complexity.
 - Reduction to other problems \rightarrow Feasibility problem: Given a set of constraints \mathcal{T} , does there exist a solution x that satisfies all constraints in \mathcal{T} ?

Solution Methodology

QCRs as Linear Inequalities: The Idea

- Example: $S = \{ \geq 3R, \leq 2T, \geq 1S, \leq 1S \}$
- **Atomic Decomposition** of *S*:

$$p_1 = \{R\}, p_2 = \{T\}, p_4 = \{S\},$$

$$p_3 = \{R, T\}, p_5 = \{R, S\}, p_6 = \{S, T\},$$

$$p_7 = \{R, S, T\}$$

QCRs as Linear Inequalities: The Idea

- Example: $S = \{ \geq 3R, \leq 2T, \geq 1S, \leq 1S \}$
- ► Atomic Decomposition of S:
- 1. Define int variable v_{i_S}, i_T, i_R for each partition:

 $p_1 \to v_{001}, p_2 \to v_{010}, p_3 \to v_{011}, p_4 \to v_{100},$

 $p_5 \to v_{101}, \ p_6 \to v_{110}, \ p_7 \to v_{111}$

$$p_1 = \{R\}, p_2 = \{T\}, p_4 = \{S\},$$

$$p_3 = \{R, T\}, p_5 = \{R, S\}, p_6 = \{S, T\},$$

$$p_7 = \{R, S, T\}$$

HEC MONTREAL

• Example: $S = \{ \geq 3R, \leq 2T, \geq 1S, \leq 1S \}$

QCRs as Linear Inequalities: The Idea

- Atomic Decomposition of S:
- 1. Define int variable v_{i_S}, i_T, i_R for each partition:

$$p_1 \to v_{001}, \ p_2 \to v_{010}, \ p_3 \to v_{011}, \ p_4 \to v_{100},$$

$$p_5 \to v_{101}, \ p_6 \to v_{110}, \ p_7 \to v_{111}$$

2. Write S as:

 $\begin{aligned} & v_{001} + v_{011} + v_{101} + v_{111} \ge 3 \\ & v_{010} + v_{011} + v_{110} + v_{111} \le 2 \\ & v_{100} + v_{101} + v_{110} + v_{111} \le 1 \\ & v_{100} + v_{101} + v_{110} + v_{111} \ge 1 \end{aligned}$

$$p_1 = \{R\}, p_2 = \{T\}, p_4 = \{S\},$$

$$p_3 = \{R, T\}, p_5 = \{R, S\}, p_6 = \{S, T\},$$

$$p_7 = \{R, S, T\}$$

QCRs as Linear Inequalities: Compact Model

- Back to our own world!
- Let \mathcal{R} be the set of all roles, and $\overline{\delta}_R$ and $\underline{\delta}_R$ be the right-hand side of at-most and at-least restrictions on a role R.

$$\begin{array}{ll} \min & & \displaystyle \sum_{R \in \mathcal{R}} \sum_{i_R \in \{0,1\}} v_{i_1,...,i_{|\mathcal{R}|}} \\ \text{s.t.} & & \displaystyle \underline{\delta}_R \leq \displaystyle \sum_{j \in \mathcal{R}} \sum_{\substack{j \neq R: i_j \in \{0,1\}\\ j=R: i_j=1}} v_{i_1,...,i_{|\mathcal{R}|}} \leq \bar{\delta}_R \quad R \in \mathcal{R} \\ & & \displaystyle v_{i_1,...,i_{|\mathcal{R}|}} \in \mathbb{Z}^+ & R \in \mathcal{R}, i_R \in \{0,1\} \end{array}$$

QCRs as Linear Inequalities: Compact Model

- Back to our own world!
- Let \mathcal{R} be the set of all roles, and $\overline{\delta}_R$ and $\underline{\delta}_R$ be the right-hand side of at-most and at-least restrictions on a role R.

$$\begin{array}{ll} \min & & \displaystyle \sum_{R \in \mathcal{R}} \sum_{i_R \in \{0,1\}} v_{i_1,...,i_{|\mathcal{R}|}} \\ \text{s.t.} & & \displaystyle \underline{\delta}_R \leq \displaystyle \sum_{j \in \mathcal{R}} \sum_{\substack{j \neq R: i_j \in \{0,1\}\\ j = R: i_j = 1}} v_{i_1,...,i_{|\mathcal{R}|}} \leq \bar{\delta}_R \quad R \in \mathcal{R} \\ & & \displaystyle v_{i_1,...,i_{|\mathcal{R}|}} \in \mathbb{Z}^+ \qquad \qquad R \in \mathcal{R}, i_R \in \{0,1\} \end{array}$$

How many partitions do we have?

QCRs as Linear Inequalities: Compact Model

- Back to our own world!
- Let \mathcal{R} be the set of all roles, and $\overline{\delta}_R$ and $\underline{\delta}_R$ be the right-hand side of at-most and at-least restrictions on a role R.

$$\begin{array}{ll} \min & & \displaystyle \sum_{R \in \mathcal{R}} \sum_{i_R \in \{0,1\}} v_{i_1,...,i_{|\mathcal{R}|}} \\ \text{s.t.} & & \displaystyle \underline{\delta}_R \leq \displaystyle \sum_{j \in \mathcal{R}} \sum_{\substack{j \neq R: i_j \in \{0,1\}\\ j=R: i_j=1}} v_{i_1,...,i_{|\mathcal{R}|}} \leq \bar{\delta}_R \quad R \in \mathcal{R} \\ & & \displaystyle v_{i_1,...,i_{|\mathcal{R}|}} \in \mathbb{Z}^+ & R \in \mathcal{R}, i_R \in \{0,1\} \end{array}$$

- How many partitions do we have?
- There's also other axioms and concepts we haven't considered yet...

Solution Methodology

HEC

• Define a mapping $\alpha(.)$ that assigns a newly defined sub-role $R' \sqsubseteq R$ to each QCR:

 $\alpha(\bowtie nR.C) = R'.$

▶ Define a mapping $\alpha(.)$ that assigns a newly defined sub-role $R' \sqsubseteq R$ to each QCR:

 $\alpha(\bowtie nR.C)=R'.$

• Define $S_Q = \{ \alpha (\bowtie nR.C) \mid \bowtie nR.C \in S \} \cup \{ C \mid \bowtie nR.C \in S \} \cup \{ \top, \bot \}.$

▶ Define a mapping $\alpha(.)$ that assigns a newly defined sub-role $R' \sqsubseteq R$ to each QCR:

 $\alpha(\bowtie nR.C) = R'.$

- Define $S_Q = \{ \alpha (\bowtie nR.C) \mid \bowtie nR.C \in S \} \cup \{ C \mid \bowtie nR.C \in S \} \cup \{ \top, \bot \}.$
- Define \mathcal{P}_{S_Q} as the power set of S_Q excluding the empty set, and any subset without a role.

 $\alpha(\bowtie nR.C)=R'.$

- ► Define $S_Q = \{ \alpha (\bowtie nR.C) \mid \bowtie nR.C \in S \} \cup \{ C \mid \bowtie nR.C \in S \} \cup \{ \top, \bot \}.$
- Define \mathcal{P}_{S_Q} as the power set of S_Q excluding the empty set, and any subset without a role.
- ▶ A partition configuration: Represents a partition p in \mathcal{P}_{S_Q} . It is a set of binary parameters $a_p^{R'}, R' \in S_Q$:

$$a_p^{R'} = \left\{ egin{array}{cc} 1 & \mbox{if role } R' \in p \\ 0 & \mbox{otherwise.} \end{array}
ight.$$

Define a mapping $\alpha(.)$ that assigns a newly defined sub-role $R' \sqsubset R$ to each QCR:

 $\alpha(\bowtie nR.C) = R'.$

- ▶ Define $S_O = \{\alpha (\bowtie nR.C) \mid \bowtie nR.C \in S\} \cup \{C \mid \bowtie nR.C \in S\} \cup \{\top, \bot\}.$
- Define \mathcal{P}_{S_O} as the power set of S_O excluding the empty set, and any subset without a role.
- A partition configuration: Represents a partition p in $\mathcal{P}_{S_{O}}$. It is a set of binary parameters $a_n^{R'}, R' \in S_Q$:

$$a_p^{R'} = \left\{ egin{array}{cc} 1 & ext{if role } R' \in p \ 0 & ext{otherwise.} \end{array}
ight.$$

 \triangleright cost_n: Cost of partition p, defined as the number of concepts in p \rightarrow We want only explicitly entailed concepts

Extended Formulation for QCRs (II)

▶ $x_p \in \mathbb{Z}^+$: The number of individuals belonging to partition p in the optimal solution.

$$\begin{array}{ll} \rightarrow & \mathsf{EF}(\mathcal{P}_{S_Q}) = \min & \sum_{p \in \mathcal{P}_{S_Q}} \mathsf{cost}_p x_p \\ & \text{s.t.} & \sum_{p \in \mathcal{P}_{S_Q}} a_p^{R'} x_p \geq \underline{\delta}_{R'}, \quad R' \in \{\alpha(\geq nR.C) \mid \geq nR.C \in S\} \\ & \sum_{p \in \mathcal{P}_{S_Q}} a_p^{R'} x_p \leq \overline{\delta}_{R'}, \quad R' \in \{\alpha(\leq nR.C) \mid \leq nR.C \in S\} \\ & x_p \in \mathbb{Z}^+, \quad p \in \mathcal{P}_{S_Q}. \end{array}$$

► A branch-and-price framework can implicitly enumerate the exponentially many partitions.

▶ We will take care of all other axioms inside the implicit enumeration.

- Branch-and-Price for QCRs
 - ▶ Let $\mathcal{P}' \subseteq \mathcal{P}_{S_Q}$. Then $\mathsf{EF}^{\mathsf{LP}}(\mathcal{P}')$ is the LP relaxation of EF over \mathcal{P}' .
 - Partition Generation:
 - Let π and ω be the dual vectors associated with \geq and \leq constraints in $\mathsf{EF}^{\mathsf{LP}}(\mathcal{P}')$, respectively.
 - Let $a^{R'} \in \{0,1\}$ be a decision variable equal to 1 iff role R' is in the generated partition.
 - Let $b_C \in \{0,1\}$ be a decision variable equal to 1 iff concept C is in the generated partition.

- Branch-and-Price for QCRs
 - ▶ Let $\mathcal{P}' \subseteq \mathcal{P}_{S_Q}$. Then $\mathsf{EF}^{\mathsf{LP}}(\mathcal{P}')$ is the LP relaxation of EF over \mathcal{P}' .
 - Partition Generation:
 - Let π and ω be the dual vectors associated with \geq and \leq constraints in $\mathsf{EF}^{\mathsf{LP}}(\mathcal{P}')$, respectively.
 - Let $a^{R'} \in \{0,1\}$ be a decision variable equal to 1 iff role R' is in the generated partition.
 - Let $b_C \in \{0,1\}$ be a decision variable equal to 1 iff concept C is in the generated partition.

$$\begin{array}{ll} \rightarrow \ \mathsf{PP} = \min & \mathsf{Reduced-cost}(\hat{\pi}, \hat{\omega}) \\ \text{s.t.} & a^{R'} \bowtie b_C, & R' \in \{\alpha(\bowtie nR.C) \mid \bowtie nR.C \in S\}, C = R'.\mathsf{Qualifier} \\ & b_C \leq b_{\top}, & C \in \{C \mid \bowtie nR.C \in S\} \\ & b_{\perp} = 0 \\ & \mathsf{All other axioms} \\ & b_C, a^{R'} \in \{0, 1\}, & R' \in \{\alpha(\bowtie nR.C) \mid \bowtie nR.C \in S\}, C \in \{C \mid \bowtie nR.C \in S\} \end{array}$$

Mapping of Axioms (I)

Introduction

- For every subsumption $A \sqsubseteq B$, add the following to PP:

Problem Description

 $b_A \leq b_B$.

Solution Methodology

- For every binary subsumption $A \sqcap B \sqsubseteq C$, add the following to PP:

$$b_A + b_B - 1 \le b_C.$$

- For every disjointness $A_1 \sqcap \cdots \sqcap A_n \sqsubseteq \bot, n \ge 2$, add the following to PP:

$$\sum_{i=1}^{n} b_{A_i} - n + 1 \le b_\perp.$$

- For modelling the negation between C and $\neg C$, add the following to PP:

$$b_C + b_{\neg C} = 1.$$

- We can show that all the other axioms in DL ALCQ can be converted to basic axioms by introducing new concepts and basic axioms.
- Example:
 - $A \sqsubseteq A_1 \sqcap \dots \sqcap A_n \equiv A \sqsubseteq A_i, \quad i = 1, \dots, n$
 - $\ A \sqsubseteq B \sqcup C \ \equiv \ \neg B \sqcap \neg C \sqsubseteq \neg A$
 - $\mathsf{-} \geq nR \cdot C \sqsubseteq A \ \equiv \ \neg A \sqsubseteq \leq (n-1)R \cdot C$
 - $\leq nR \cdot C \sqsubseteq A \equiv \neg A \sqsubseteq \geq (n+1)R \cdot C$
 - $A \sqsubseteq \exists R \cdot B \equiv A \sqsubseteq \geq 1R \cdot B$
 - $\mathsf{-} \geq 1R \cdot B \sqsubseteq A \ \equiv \ \neg A \sqsubseteq \leq 0R \cdot B$

Results & conclusion
HEC

- Branching rule can be defined on binary variables $a^{R'}$.
- However, in all of our instances so far (real and synthetic ontologies), optimal solution returned by the column generation method have been integral!

Conjecture

The polyhedron of $EF^{LP}(\mathcal{P}')$ is integral.

We haven't been able to prove this using the usual sufficient conditions. So, to be continued...

Results & Conclusion

- Preliminary Experiments
 - We compared our ILP-based reasoner with major OWL reasoners: FaCT++, HermiT, Konclude, and Racer.
 - Benchmark ontologies:

Ontology Name	#Axioms	#Concepts	#Roles	#QCRs
canadian-parliament-factions-1	48	21	6	19
canadian-parliament-factions-2	56	24	7	25
canadian-parliament-factions-3	64	27	8	30
canadian-parliament-factions-4	72	30	9	35
canadian-parliament-factions-5	81	34	10	40
C-SAT-exp-ELQ	26	10	4	13
C-UnSAT-exp-ELQ	26	10	4	13
genomic-cds rules-ELQ-fragment-1	716	358	1	357
genomic-cds rules-ELQ-fragment-2	718	359	1	357

- Preliminary Observations
 - The only reasoners that can classify all variants of the simplest of the first benchmark ontology within the given time limit of 1000s are our ILP-based reasoner and Racer.
 - Second benchmark:

C-SAT-exp-ELQ						C-UnSAT-exp-ELQ				
n	ILP	Fac	Her	Kon	Rac	ILP	Fac	Her	Kon	Rac
40	0.6	ТО	ТО	ТО	0.01	0.63	ТО	ТО	ТО	0.01
20	0.62	ТО	то	то	0.01	0.80	ТО	ТО	то	0.01
10	0.63	ТО	ТО	ТО	0.01	0.99	ТО	ТО	ТО	0.01
5	0.72	6.3	4.4	0.91	0.01	0.74	ТО	ТО	784	0.01
3	0.62	0.17	0.18	0.33	0.01	0.75	0.25	1.15	1.18	0.01

• Ontologies genomic-cds rules contain many concepts using QCRs of the form $= 2 \text{ has.} A_i$, with no interaction between (A_i) : all reasoners except Racer performed well.

- > This is an ongoing work! So far, we've only focused on mappings and proof of concept.
- The normalization of non-basic axioms is taking longer than expected, however according to the DL literature should be possible in polynomial time. To be investigated.
- Conjecture, if proved, can simplify the implementation and presentation to non-OR communities.

HEC MONTREAL

Recording at GERAD Youtube Channel

Séminaire du GERAD

Large-scale optimization methods for logical reasoning: A novel perspective ...more

M. Daryalal

Large-scale Optimization for Logical Reasoning

Results & Conclusion

Thanks for listening!

