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Introduction Problem Description Solution Methodology Results & Conclusion

Description Logic

▶ Description Logics (DL) are a family of formal knowledge representation languages.

▶ Used to represent the knowledge of an application domain in a structured and formal way.

▶

Checking satisfiability; classification; answering queries

Provides a mechanism for encoding semantics of a domain and reasoning about it.

▶

Used to define a formal representation of
a domain using concepts and relationships.

An extension of the traditional Web, enables computers to
understand web data, using ontologies.

It serves as a foundation for implementing ontologies and semantic web technologies

M. Daryalal Large-scale Optimization for Logical Reasoning 3 / 26



Introduction Problem Description Solution Methodology Results & Conclusion

Description Logic

▶ Description Logics (DL) are a family of formal knowledge representation languages.

▶ Used to represent the knowledge of an application domain in a structured and formal way.

▶

Checking satisfiability; classification; answering queries

Provides a mechanism for encoding semantics of a domain and reasoning about it.

▶

Used to define a formal representation of
a domain using concepts and relationships.

An extension of the traditional Web, enables computers to
understand web data, using ontologies.

It serves as a foundation for implementing ontologies and semantic web technologies

M. Daryalal Large-scale Optimization for Logical Reasoning 3 / 26



Introduction Problem Description Solution Methodology Results & Conclusion

Description Logic

▶ Description Logics (DL) are a family of formal knowledge representation languages.

▶ Used to represent the knowledge of an application domain in a structured and formal way.

▶

Checking satisfiability; classification; answering queries

Provides a mechanism for encoding semantics of a domain and reasoning about it.

▶

Used to define a formal representation of
a domain using concepts and relationships.

An extension of the traditional Web, enables computers to
understand web data, using ontologies.

It serves as a foundation for implementing ontologies and semantic web technologies

M. Daryalal Large-scale Optimization for Logical Reasoning 3 / 26



Introduction Problem Description Solution Methodology Results & Conclusion

Description Logic

▶ Description Logics (DL) are a family of formal knowledge representation languages.

▶ Used to represent the knowledge of an application domain in a structured and formal way.

▶

Checking satisfiability; classification; answering queries

Provides a mechanism for encoding semantics of a domain and reasoning about it.

▶

Used to define a formal representation of
a domain using concepts and relationships.

An extension of the traditional Web, enables computers to
understand web data, using ontologies.

It serves as a foundation for implementing ontologies and semantic web technologies

M. Daryalal Large-scale Optimization for Logical Reasoning 3 / 26



Introduction Problem Description Solution Methodology Results & Conclusion

Description Logic

▶ Description Logics (DL) are a family of formal knowledge representation languages.

▶ Used to represent the knowledge of an application domain in a structured and formal way.

▶

Checking satisfiability; classification; answering queries

Provides a mechanism for encoding semantics of a domain and reasoning about it.

▶

Used to define a formal representation of
a domain using concepts and relationships.

An extension of the traditional Web, enables computers to
understand web data, using ontologies.

It serves as a foundation for implementing ontologies and semantic web technologies

M. Daryalal Large-scale Optimization for Logical Reasoning 3 / 26



Introduction Problem Description Solution Methodology Results & Conclusion

The Semantic Web & Description Logic

▶ OWL (Web Ontology Language): A language for defining and instantiating Web ontologies.

- OWL uses DL to provide semantics for complex ontologies.

- OWL DL is compatible with existing Web standards, e.g., HTTP, XML, RDF, RDFS

→ DL provides a theoretical basis for semantic reasoning on the Web.

Semantic Web: Data is not just structured but also meaningful and machine-understandable.

▶ Why not the existing Web data models? XML? RDF?

- XML: syntax ✓, semantics ×

- RDF: syntax ✓, (basic) semantics ✓, reasoning ×

- OWL DL: syntax ✓, (rich) semantics ✓, reasoning ✓
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A Simple Ontology: Description

Modeling a University domain including entities like Professors, Students, and Courses.

▶ Concepts: Professor, Student, Full-time Student, Part-time Student, Course

▶ Roles: teaches(Professor, Course), enrolled(Student, Course)

▶ Axioms:

- Every Full-time Student is a Student. Every Part-time Student is a Student.

- A Student is either Full-time Student, or Part-time Student. They cannot be both.

- Every Full-time Student is enrolled in at least 3 Courses.

- Every Part-time Student is enrolled in at most 2 Courses.

- For every Course there exists some Professor teaching it.
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A Simple Ontology: DL Syntax

Modeling a University domain including entities like Professors, Students, and Courses.

▶ Concepts: Professor, Student, Full-time Student, Part-time Student, Course

▶ Roles: teaches(Professor, Course), enrolled(Student, Course)

▶ Axioms:

- Full-time Student ⊑ Student, Part-time Student ⊑ Student

- Student ⊑ Full-time Student ⊔ Part-time Student, Full-time Student ⊓ Part-time Student ⊑ ⊥

- Full-time Student ⊑≥ 3 enrolled.Course

- Part-time Student ⊑≤ 2 enrolled.Course

- Course ⊑ ∃inv(teaches).Professor
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A Simple Ontology: Knowledge Graph

Course ⊑ ∃inv(teaches).Professor

≥
3

≤ 2

Full-time Student ⊓ Part-time Student ⊑ ⊥

⊑ Full-time Student ⊔ Part-time Student
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A Simple Ontology: Reasoning

▶ OWL DL can also infer new knowledge → reasoning

▶ Let’s add two new concepts to our ontology:

- PhD-Student ⊑ Student

- Seminar ⊑ ∃inv(enrolled).PhD-Student

▶ We haven’t explicitly told the reasoner that a Seminar is a Course. It will infer this.

- RDF cannot represent the semantics of our ontology. It lacks the vocabulary for
disjointedness, cardinality, etc.

- RDF cannot infer new knowledge.
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A Simple Ontology: Reasoning

▶ Added concepts and axiom
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A Simple Ontology: Reasoning

▶ Inferences made by the reasoner
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A Simple Ontology: Reasoning

▶ Explanations provided by the reasoner
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Takeaway: Key Features of DL

Expressiveness

Decidability Conciseness

Formal Semantics

Description Logic

It balances expressivity
with computational
tractability

The reasoning problems
can be solved
algorithmically.

Provides compact and
human-readable form.

Uses formal logic-based
semantics to avoid
ambiguity.
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Constructors & Axioms in DL ALCQ (I)

▶ An interpretation: I = (∆I , .I), with ∆I a non-empty domain set and .I a mapping.

Thing ⊤ ≡ ⊤I = ∆I

Nothing ⊥ ≡ ⊥I = ∅

Concept (class) A ≡ AI ⊆ ∆I

Concept assertion a : C ≡ aI ∈ CI

Negation ¬C ≡ ∆I \ CI

Conjunction C ⊓D ≡ CI ∩DI

Disjunction C ⊔D ≡ CI ∪DI

Subsumption C ⊑ D ≡ CI ⊆ DI
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Constructors & Axioms in DL ALCQ (II)

▶ An interpretation: I = (∆I , .I), with ∆I a non-empty domain set and .I a mapping.

Role (relationship) R ≡ RI ⊆ ∆I ×∆I

Role assertion (a, b) : R ≡ (aI , bI) ∈ RI

Universal restriction ∀R.C ≡ {x|∀y : (x, y) ∈ RI ⇒ y ∈ CI}

At-least qualified cardinality restriction ≥ nR.C ≡ {x|#RI(x,C) ≥ n}

At-most qualified cardinality restriction ≤ mR.C ≡ {x|#RI(x,C) ≤ m}

Role hierarchy R ⊑ S ≡ RI ⊆ SI

Transitive role R ∈ NRT ≡ RI = (RI)+
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Problem Description
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The Satisfiability Problem in DL Ontologies

The SAT Problem
Given an ontology O written in a Description Logic L, and a concept C, is there a model I of
O where CI ̸= ∅?

▶ Does there exist an interpretation that satisfies all axioms in O and where C is non-empty?

▶ Ontology axioms constrain possible Is, potentially making a concept unsatisfiable.

▶ Example:

- Full-time Student ⊑ Student

- Professor ⊑ ¬ Student (Professors are not Students)

- Is Professor ⊓ Full-time Student satisfiable? No → Professor ⊓ Full-time Student ⊑ ⊥
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The Challenge of Qualified Cardinality Restrictions (QCRs)

▶ QCRs are expressive, but computationally challenging for reasoning algorithms.

▶ Reasoning with QCRs:

- Tableaux algorithms: Introduce or merge individuals to satisfy cardinality constraints.

• Example: For Person ⊑≥ 2hasChild.Student:

◦ Start with individual ‘a: Person’, ‘a: (≥ 2hasChild.Student)’

◦ Introduce ‘b1, b2 : Student’ such that hasChild(a, b1), hasChild(a, b2)

• Challenges: Non-determinism, exponential complexity.

- Reduction to other problems → Feasibility problem: Given a set of constraints T ,
does there exist a solution x that satisfies all constraints in T ?
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QCRs as Linear Inequalities: The Idea

▶ Example: S = {≥ 3R,≤ 2T,≥ 1S,≤ 1S}
▶ Atomic Decomposition of S:

1. Define int variable v
iS , iT , iR

for each partition:

p1 → v001, p2 → v010, p3 → v011, p4 → v100,

p5 → v101, p6 → v110, p7 → v111

2. Write S as:
v001 + v011 + v101 + v111 ≥ 3

v010 + v011 + v110 + v111 ≤ 2

v100 + v101 + v110 + v111 ≤ 1

v100 + v101 + v110 + v111 ≥ 1

p1 = {R}, p2 = {T}, p4 = {S},
p3 = {R, T}, p5 = {R,S}, p6 = {S, T},
p7 = {R,S, T}
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QCRs as Linear Inequalities: Compact Model

▶ Back to our own world!

▶ Let R be the set of all roles, and δ̄R and δR be the right-hand side of at-most and at-least
restrictions on a role R.

min
∑
R∈R

∑
iR∈{0,1}

vi1,...,i|R|

s.t. δR ≤
∑
j∈R

∑
j ̸=R:ij∈{0,1}
j=R:ij=1

vi1,...,i|R| ≤ δ̄R R ∈ R

vi1,...,i|R| ∈ Z+ R ∈ R, iR ∈ {0, 1}

▶ How many partitions do we have?

▶ There’s also other axioms and concepts we haven’t considered yet...
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Solution Methodology
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Extended Formulation for QCRs (I)

▶ Define a mapping α(.) that assigns a newly defined sub-role R′ ⊑ R to each QCR:

α(▷◁ nR.C) = R′.

▶ Define SQ = {α(▷◁ nR.C) | ▷◁ nR.C ∈ S} ∪ {C | ▷◁ nR.C ∈ S} ∪ {⊤,⊥}.
▶ Define PSQ

as the power set of SQ excluding the empty set, and any subset without a role.

▶ A partition configuration: Represents a partition p in PSQ
. It is a set of binary

parameters aR
′

p , R′ ∈ SQ:

aR
′

p =

{
1 if role R′ ∈ p

0 otherwise.

▶ costp: Cost of partition p, defined as the number of concepts in p

→ We want only explicitly entailed concepts
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→ We want only explicitly entailed concepts
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Extended Formulation for QCRs (II)

▶ xp ∈ Z+: The number of individuals belonging to partition p in the optimal solution.

→ EF(PSQ
) = min

∑
p∈PSQ

costpxp

s.t.
∑

p∈PSQ

aR
′

p xp ≥ δR′ , R′ ∈ {α(≥ nR.C) |≥ nR.C ∈ S}∑
p∈PSQ

aR
′

p xp ≤ δ̄R′ , R′ ∈ {α(≤ nR.C) |≤ nR.C ∈ S}

xp ∈ Z+, p ∈ PSQ
.

▶ A branch-and-price framework can implicitly enumerate the exponentially many partitions.

▶ We will take care of all other axioms inside the implicit enumeration.
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Branch-and-Price for QCRs

▶ Let P ′ ⊆ PSQ
. Then EFLP(P ′) is the LP relaxation of EF over P ′.

▶ Partition Generation:

- Let π and ω be the dual vectors associated with ≥ and ≤ constraints in EFLP(P ′), respectively.

- Let aR
′ ∈ {0, 1} be a decision variable equal to 1 iff role R′ is in the generated partition.

- Let bC ∈ {0, 1} be a decision variable equal to 1 iff concept C is in the generated partition.

→ PP = min Reduced-cost(π̂, ω̂)

s.t. aR
′
▷◁ bC , R′ ∈ {α(▷◁ nR.C) | ▷◁ nR.C ∈ S}, C = R′.Qualifier

bC ≤ b⊤, C ∈ {C | ▷◁ nR.C ∈ S}
b⊥ = 0

All other axioms

bC , a
R′

∈ {0, 1}, R′ ∈ {α(▷◁ nR.C) | ▷◁ nR.C ∈ S}, C ∈ {C | ▷◁ nR.C ∈ S}
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Mapping of Axioms (I)

▶ Basic axioms:

- For every subsumption A ⊑ B, add the following to PP:

bA ≤ bB.

- For every binary subsumption A ⊓B ⊑ C, add the following to PP:

bA + bB − 1 ≤ bC .

- For every disjointness A1 ⊓ · · · ⊓An ⊑⊥, n ≥ 2, add the following to PP:∑n
i=1 bAi − n+ 1 ≤ b⊥.

- For modelling the negation between C and ¬C, add the following to PP:

bC + b¬C = 1.
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Mapping of Axioms (II)

▶ We can show that all the other axioms in DL ALCQ can be converted to basic axioms by
introducing new concepts and basic axioms.

▶ Example:

- A ⊑ A1 ⊓ · · · ⊓An ≡ A ⊑ Ai, i = 1, . . . , n

- A ⊑ B ⊔ C ≡ ¬B ⊓ ¬C ⊑ ¬A

- ≥ nR · C ⊑ A ≡ ¬A ⊑≤ (n− 1)R · C

- ≤ nR · C ⊑ A ≡ ¬A ⊑≥ (n+ 1)R · C

- A ⊑ ∃R ·B ≡ A ⊑≥ 1R ·B

- ≥ 1R ·B ⊑ A ≡ ¬A ⊑≤ 0R ·B

- · · ·
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Integrality

▶ Branching rule can be defined on binary variables aR
′
.

▶ However, in all of our instances so far (real and synthetic ontologies), optimal solution
returned by the column generation method have been integral!

Conjecture

The polyhedron of EFLP(P ′) is integral.

▶ We haven’t been able to prove this using the usual sufficient conditions. So, to be
continued...
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Results & Conclusion
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Preliminary Experiments

▶ We compared our ILP-based reasoner with major OWL reasoners: FaCT++, HermiT,
Konclude, and Racer.

▶ Benchmark ontologies:

Ontology Name #Axioms #Concepts #Roles #QCRs
canadian-parliament-factions-1 48 21 6 19
canadian-parliament-factions-2 56 24 7 25
canadian-parliament-factions-3 64 27 8 30
canadian-parliament-factions-4 72 30 9 35
canadian-parliament-factions-5 81 34 10 40
C-SAT-exp-ELQ 26 10 4 13
C-UnSAT-exp-ELQ 26 10 4 13
genomic-cds rules-ELQ-fragment-1 716 358 1 357
genomic-cds rules-ELQ-fragment-2 718 359 1 357
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Preliminary Observations

▶ The only reasoners that can classify all variants of the simplest of the first benchmark
ontology within the given time limit of 1000s are our ILP-based reasoner and Racer.

▶ Second benchmark:
C-SAT-exp-ELQ C-UnSAT-exp-ELQ

n ILP Fac Her Kon Rac ILP Fac Her Kon Rac
40 0.6 TO TO TO 0.01 0.63 TO TO TO 0.01
20 0.62 TO TO TO 0.01 0.80 TO TO TO 0.01
10 0.63 TO TO TO 0.01 0.99 TO TO TO 0.01
5 0.72 6.3 4.4 0.91 0.01 0.74 TO TO 784 0.01
3 0.62 0.17 0.18 0.33 0.01 0.75 0.25 1.15 1.18 0.01

▶ Ontologies genomic-cds rules contain many concepts using QCRs of the form
= 2 has.Ai, with no interaction between (Ai): all reasoners except Racer performed well.
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Next...

▶ This is an ongoing work! So far, we’ve only focused on mappings and proof of concept.

▶ The normalization of non-basic axioms is taking longer than expected, however according
to the DL literature should be possible in polynomial time. To be investigated.

▶ Conjecture, if proved, can simplify the implementation and presentation to non-OR
communities.
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Recording at GERAD Youtube Channel
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Thanks for listening!
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