Recovering Dantzig-Wolfe Bounds by Cutting Planes

Rui Chen Cornell Tech (Joining CUHK-Shenzhen in August)

MIP Workshop, University of Kentucky

June, 2024

Figure: Andrea, me and Oktay at MIP 2022

MIPs with blocks

• We consider MI(L)Ps with the following structure:

$$z^* := \min c^\top x$$

s.t. $x_{I(j)} \in P^j, \quad j \in \{1, \dots, q\},$ (blocks)
 $Ax \ge b,$ (coupling constraints)
 $x \in X,$ (integrality)

where $I(j) \subseteq \{1, \ldots, n\}$ (not necessarily disjoint), and

$$P^j = \{y \in \mathbb{R}^{|I(j)|} : G^j y \ge g^j\} \qquad \qquad \text{for } j = 1, \dots, q$$

and $X \subseteq \mathbb{R}^n$ represents integrality constraints on some of the variables (all data is rational, problem is feasible)

- Many important MIP problems have this structure
- Notice that P^j s do not know about the integrality

MIPs with blocks: Applications

- Loosely coupled [Bodur et al. 2022]
- Multiple knapsack assignment [Kataoka and Yamada 2014]
- Generalized assignment [Gattal and Benrazek 2021]

• Two-stage stochastic integer programs [Ahmed 2010]

- Overlapping
- Temporal knapsack [Bartlett et al. 2005]
- Temporal bin packing [Dell'Amico et al. 2020]

MIP with blocks:

LP Relaxation:

DW Relaxation:

$$\begin{split} z^{LP} &:= \min \, c^\top x & z^{DW} := \min \, c^\top x \\ \text{s.t. } x_{I(j)} \in P^j, \quad j \in J & \text{s.t. } x_{I(j)} \in \mathsf{conv}(Q^j), \quad j \in J \\ Ax \geq b, & Ax \geq b, \end{split}$$

where $Q^j = P^j \cap X^j$ (X^j : integrality constraints on $x_{I(j)}$) and

 $z^{DW} \geq z^{LP}$

DW Relaxation

$$z^{DW} = \min c^{\top} x$$

s.t. $x_{I(j)} = \sum_{v \in V^j} \lambda_v v + \sum_{r \in R^j} \mu_r r, \quad j \in J, \quad (\pi^j)$
$$\sum_{v \in V^j} \lambda_v = 1, \qquad \qquad j \in J \quad (\theta^j)$$

$$Ax \ge b, \qquad \qquad (\beta)$$

$$\lambda \ge 0, \quad \mu \ge 0,$$

where V^{j} (R^{j}) is the set of extreme points (rays) of conv (Q^{j})

• Solve the DW relaxation using column generation

Pricing problem for block $j \in J$:

$$D_j(\pi^j) := \min\left\{ (\pi^j)^\top v : v \in \operatorname{conv}(Q^j) \right\} = \min\left\{ (\pi^j)^\top v : v \in Q^j \right\}$$

• Can be used to solve the MIP exactly if combined with branching (i.e., branch-and-price, but not available in most solvers)

DW Relaxation

$$z^{DW} = \min c^{\top} x$$

s.t. $x_{I(j)} = \sum_{v \in V^j} \lambda_v v + \sum_{r \in R^j} \mu_r r, \quad j \in J, \quad (\pi^j)$
$$\sum_{v \in V^j} \lambda_v = 1, \qquad \qquad j \in J \quad (\theta^j)$$

$$Ax \ge b, \qquad \qquad (\beta)$$

$$\lambda \ge 0, \quad \mu \ge 0,$$

where $V^{j}(R^{j})$ is the set of extreme points (rays) of conv (Q^{j})

• Solve the DW relaxation using column generation

Pricing problem for block $j \in J$:

$$D_j(\pi^j) := \min\left\{ (\pi^j)^\top v : v \in \operatorname{conv}(Q^j) \right\} = \min\left\{ (\pi^j)^\top v : v \in Q^j \right\}$$

 Can be used to solve the MIP exactly if combined with branching (i.e., branch-and-price, but not available in most solvers)

Example: Multiple knapsack assignment problem (MKAP)

Given:

- N: set of items with weights
- M: set of knapsack types with capacity
- K: set of item classes
- $(S_k)_{k \in K}$: set of items that belong to item class k

- Objective: Maximize profit of packed items
- Only items from the same item class can be packed together
- Cannot exceed knapsack capacities

Example: Multiple knapsack assignment problem (MKAP)

Given:

- N: set of items with weights
- M: set of knapsack types with capacity
- K: set of item classes
- $(S_k)_{k \in K}$: set of items that belong to item class k

MKAP

$$\begin{array}{ll} \min & \displaystyle \sum_{i \in M} \sum_{j \in N} -p_j x_{ij} \\ \text{s.t.} & \displaystyle \sum_{j \in S_k} w_j x_{ij} \leq C_i y_{ik}, & i \in M, \ k \in K, \\ & \displaystyle \sum_{i \in M} x_{ij} \leq 1, & j \in N, \\ & \displaystyle \sum_{k \in K} y_{ik} \leq 1, & i \in M, \\ & \displaystyle x \in \{0, 1\}^{M \times N}, \ y \in \{0, 1\}^{M \times K} \end{array}$$

DW bound (z^{DW}) is better than LP bound $(z^{LP}),$ and sometimes significantly so

K	M	N	$(z^{DW} - z^{LP})/ z^{DW} $ (%)	K	M	N	$(z^{DW} - z^{LP})/ z^{DW} $ (%)
10	10	100	5.65	25	10	100	54.17
10	10	200	3.53	25	10	200	58.14
10	10	300	3.64	25	10	300	66.02
10	20	100	0.74	25	20	100	9.40
10	20	200	0.02	25	20	200	8.74
10	20	300	0.00	25	20	300	10.18
10	30	100	0.88	25	30	100	3.80
10	30	200	0.02	25	30	200	1.79
10	30	300	0.00	25	30	300	1.30
10	40	100	1.51	25	40	100	3.13
10	40	200	0.04	25	40	200	0.75
10	40	300	0.00	25	40	300	0.25

Table: Bound gaps (|K| = 10)

Table: Bound gaps (|K| = 25)

- N: set of items
- M: set of knapsacks
- K: set of item classes

-

Let z^{LP+} denote the bound obtained by Gurobi at the root node (LP bound enhanced by Gurobi presolve and cuts)

K	M	N	$(z^{DW} - z^{LP})/ z^{DW} $ (%)	$(z^{DW} - z^{LP+})/ z^{DW} $ (%)
10	10	100	5.65	4 13
10	10	200	3.53	2.64
10	10	300	3.64	2.79
10	40	100	1.51	0.12
25	10	100	54.17	1.76
25	10	200	58.14	13.64
25	10	300	66.02	16.63
25	20	100	9.40	0.45
25	20	200	8.74	6.83
25	20	300	10.18	8.78
25	30	100	3.80	0.13
25	30	200	1.79	0.85
25	30	300	1.30	1.29
25	40	100	3.13	0.00

Table: Bound gaps

Question: How to incorporate DW information without branch-and-price?

-

Let z^{LP+} denote the bound obtained by Gurobi at the root node (LP bound enhanced by Gurobi presolve and cuts)

K	M	N	$(z^{DW} - z^{LP})/ z^{DW} $ (%)	$(z^{DW} - z^{LP+})/ z^{DW} $ (%)
10	10	100	F 6F	4.13
10	10	100	5.05	4.13
10	10	200	3.53	2.64
10	10	300	3.64	2.79
10	40	100	1.51	0.12
25	10	100	54.17	1.76
25	10	200	58.14	13.64
25	10	300	66.02	16.63
25	20	100	9.40	0.45
25	20	200	8.74	6.83
25	20	300	10.18	8.78
25	30	100	3.80	0.13
25	30	200	1.79	0.85
25	30	300	1.30	1.29
25	40	100	3.13	0.00

Table: Bound gaps

Question: How to incorporate DW information without branch-and-price?

Objective function cut

We can add a single cutting plane $c^\top x \geq z^{DW}$ into the solver

- Straightforward, easy to implement
- · Requires only one cut
- Often performs very badly in practice...

Explanation: high dual degeneracy (large/high-dim. optimal face) in LP relaxation

Simple Observation

Let P be a polyhedron in \mathbb{R}^n . If neither $c^{\top}x \leq v$ nor $c^{\top}x \geq v$ is valid for P, then

$$\dim(P \cap \{x : c^{\top}x = v\}) = \dim(P) - 1.$$

- Ineffective solver cutting planes
- Ineffective branching decisions
- Serious degeneracy issues in the dual LP

Objective function cut

We can add a single cutting plane $c^{\top}x \ge z^{DW}$ into the solver

- Straightforward, easy to implement
- · Requires only one cut
- Often performs very badly in practice...

Explanation: high dual degeneracy (large/high-dim. optimal face) in LP relaxation

Simple Observation

Let P be a polyhedron in \mathbb{R}^n . If neither $c^{\top}x \leq v$ nor $c^{\top}x \geq v$ is valid for P, then

$$\dim(P \cap \{x : c^{\top}x = v\}) = \dim(P) - 1.$$

- Ineffective solver cutting planes
- Ineffective branching decisions
- · Serious degeneracy issues in the dual LP

Question: Is there a better way?

$$z^{DW} = \min\left\{c^{\top}x \ : \ Ax \ge b, \ x_{I(j)} \in \mathsf{conv}(Q^j), \ j = 1, \dots, q\right\}$$

 \implies DW bound z^{DW} can be obtained by adding cuts valid for $\{Q^j\}_{j=1}^q$

Definition

We call a cut a Dantzig-Wolfe Block (DWB) cut if it is of the form

 $\pi^{\top} x_{I(j)} \ge D_j(\pi)$

for some $j \in J$, where $D_j(\pi) = \min\{\pi^\top y : y \in Q^j\}$

- DWB cuts together with $Ax \ge b$ recover the DW bound z^{DW}
- Existing cutting plane approaches [Ralphs et al. 2003, Ralphs and Galati 2005, Avella et al. 2010]
- Under some conditions these cuts define high dimensional "faces" of the MIP

Question: Do we need a lot of DWB cuts to obtain z^{DW} ?

$$z^{DW} = \min\left\{c^{\top}x \ : \ Ax \ge b, \ x_{I(j)} \in \mathsf{conv}(Q^j), \ j = 1, \dots, q\right\}$$

 \implies DW bound z^{DW} can be obtained by adding cuts valid for $\{Q^j\}_{j=1}^q$

Definition

We call a cut a Dantzig-Wolfe Block (DWB) cut if it is of the form

 $\pi^{\top} x_{I(j)} \ge D_j(\pi)$

for some $j \in J$, where $D_j(\pi) = \min\{\pi^\top y : y \in Q^j\}$

- DWB cuts together with $Ax \ge b$ recover the DW bound z^{DW}
- Existing cutting plane approaches [Ralphs et al. 2003, Ralphs and Galati 2005, Avella et al. 2010]
- Under some conditions these cuts define high dimensional "faces" of the MIP

Question: Do we need a lot of DWB cuts to obtain z^{DW} ?

$$z^{DW} = \min\left\{c^{\top}x \ : \ Ax \ge b, \ x_{I(j)} \in \mathsf{conv}(Q^j), \ j = 1, \dots, q\right\}$$

 \implies DW bound z^{DW} can be obtained by adding cuts valid for $\{Q^j\}_{j=1}^q$

Definition

We call a cut a Dantzig-Wolfe Block (DWB) cut if it is of the form

$$\pi^{\top} x_{I(j)} \ge D_j(\pi)$$

for some $j \in J$, where $D_j(\pi) = \min\{\pi^\top y : y \in Q^j\}$

- DWB cuts together with $Ax \ge b$ recover the DW bound z^{DW}
- Existing cutting plane approaches [Ralphs et al. 2003, Ralphs and Galati 2005, Avella et al. 2010]
- Under some conditions these cuts define high dimensional "faces" of the MIP

$$z^{DW} = \min\left\{c^{\top}x \ : \ Ax \ge b, \ x_{I(j)} \in \mathsf{conv}(Q^j), \ j = 1, \dots, q\right\}$$

 \implies DW bound z^{DW} can be obtained by adding cuts valid for $\{Q^j\}_{j=1}^q$

Definition

We call a cut a Dantzig-Wolfe Block (DWB) cut if it is of the form

$$\pi^{\top} x_{I(j)} \ge D_j(\pi)$$

for some $j \in J$, where $D_j(\pi) = \min\{\pi^\top y : y \in Q^j\}$

- DWB cuts together with $Ax \ge b$ recover the DW bound z^{DW}
- Existing cutting plane approaches [Ralphs et al. 2003, Ralphs and Galati 2005, Avella et al. 2010]
- Under some conditions these cuts define high dimensional "faces" of the MIP

Question: Do we need a lot of DWB cuts to obtain z^{DW} ?

Column generation gives an inner approximation

Column generation

Inner approximation

$$\min \sum_{i \in I} c_i x_i$$
s.t. $x_{I(j)} = \sum_{v \in \hat{V}^j} \lambda_v v + \sum_{r \in \hat{R}^j} \mu_r r, \ j \in J \ (\pi^j)$

$$\sum_{v \in \hat{V}^j} \lambda_v = 1, \qquad j \in J \ (\theta_j)$$

$$Ax \ge b, \qquad (\beta)$$

$$\lambda \ge 0, \ \mu \ge 0$$

• For $\tau = 1, 2, \ldots$, we solve the following subproblem for each block $j \in J$:

$$D_j(\pi^j) := \min \left\{ (\pi^j)^\top v : v \in Q^j \right\}.$$

to generate a new point $v \in V^j$ or a ray $r \in R^j$

Notice: Such a point $v \in V^j$ gives a valid inequality for Q^j :

$$(\pi^{j})^{\top} x_{I(j)} \ge (\pi^{j})^{\top} v = D_{j}(\pi^{j})$$

Inner and outer approximations

Build an inner approx. for each $conv(Q^j)$

$$\begin{split} \min \; & \sum_{i \in I} c_i x_i \\ \text{s.t. } & \left(\pi^j(\tau)\right)^\top x_{I(j)} \geq D_j\left(\pi^j(\tau)\right), \ j \in J, \ \tau \in \mathcal{T} \\ & Ax \geq b \end{split}$$

Build an outer approx. for each $conv(Q^j)$

Inner and outer approximations

Build an inner approx. for each $conv(Q^j)$

$\min \sum_{i \in I} c_i x_i$		
$\text{s.t. } x_{I(j)} = \sum_{v \in \hat{V}^j} \lambda_v v + \sum_{r \in \hat{R}^j} \mu_r r,$	$j \in J$	(π^j)
$\sum_{v \in \hat{V}^j} \lambda_v = 1,$	$j \in J$	(θ_j)
$Ax \ge b,$		(β)
$\lambda \ge 0, \ \mu \ge 0$		

Build an outer approx. for each $conv(Q^j)$

$$\begin{split} \min & \sum_{i \in I} c_i x_i \\ \text{s.t. } & \left(\pi^j(\tau)\right)^\top x_{I(j)} \geq D_j\left(\pi^j(\tau)\right), \quad j \in J, \ \tau \in \mathcal{T} \\ & Ax \geq b \end{split}$$

• For $\tau = 1, 2, \ldots$, we solve the following subproblem for each block $j \in J$:

$$D_j(\pi^j) := \min\left\{ (\pi^j)^\top v : v \in Q^j \right\}$$

- At termination we have: $z^{DW} = b^\top \bar{\beta} + \sum_{j=1}^q \bar{\theta}_j$, and

*θ
_j* ≤ *D_j*(*π
^j*) for all *j* ∈ *J* (Nonnegative reduced costs)
 c_i = *A*^T_i*β* + ∑_{*j*:*i*∈*I*(*j*)}*π*^{*j*}_i, for all *i* = 1,...,*n* (Dual feasibility of master LP)

Last-iteration DWB cuts

• Let $\bar{\pi}^j$ be the dual variables associated with the constraints

$$x_{I(j)} = \sum_{v \in \hat{V}^j} \lambda_v v + \sum_{r \in \hat{R}^j} \mu_r r, \ j \in J$$

at the last iteration

• We know (not only for $\bar{\pi}^j$ but for any π^j) $(\bar{\pi}^j)^\top x_{I(j)} \ge D_j(\bar{\pi}^j) \quad \longleftarrow \min\left\{(\pi^j)^\top v : v \in Q^j\right\}$

are valid for the MIP for all $i \in J$

- These cuts together with linking constraints imply the objective function cut $c^\top x > z^{DW}$

Theorem

For $j \in J$, let $D_j(\bar{\pi}^j) = \min\{(\bar{\pi}^j)^\top y : y \in Q^j\}$ be the block subproblem in the last iteration of DW decomposition. Then

$$z^{DW} = \min c^{\top} x$$

s.t. $(\bar{\pi}^j)^{\top} x_{I(j)} \ge D_j(\bar{\pi}^j), \quad j \in J,$
 $Ax \ge b$

Proof of the Theorem

The " \geq " direction is from validity of the DWB cuts. We only prove the " \leq " direction. For $j \in J$, let $D_j(\bar{\pi}^j) = \min\{(\bar{\pi}^j)^\top y : y \in Q^j\}$ be the block subproblem in the last iteration of DW decomposition. Then

$$\begin{aligned} c^{DW} &= \min \, c^\top x \\ \text{s.t.} \ (\bar{\pi}^j)^\top x_{I(j)} \geq D_j(\bar{\pi}^j), \quad j \in J, \\ Ax \geq b. \end{aligned}$$

For all x satisfying $Ax \geq b, \; (\bar{\pi}^j)^\top x_{I(j)} \geq D_j(\bar{\pi}^j), \; j \in J,$ we have

$$c^{\top}x = \sum_{i=1}^{n} c_{i}x_{i} \underbrace{=}_{\mathsf{Dual feasibility}} \sum_{i=1}^{n} \left[x_{i}A_{i}^{\top}\bar{\beta} + \sum_{j:i\in I(j)} x_{i}\bar{\pi}_{i}^{j} \right] = \underbrace{(\bar{\beta})}_{\geq 0}^{\top} \underbrace{Ax}_{\geq b} + \sum_{j=1}^{q} \underbrace{(\bar{\pi}^{j})^{\top}x_{I(j)}}_{\geq D_{j}(\bar{\pi}^{j})} \\ \geq b^{\top}\bar{\beta} + \sum_{j=1}^{q} D_{j}(\bar{\pi}^{j}) \underbrace{\geq}_{\mathsf{Nonneg. reduced costs}} b^{\top}\bar{\beta} + \sum_{j=1}^{q} \bar{\theta}_{j} = z^{DW}. \quad \Box$$

(K , M , N)	# solved instances			Avg	Avg B&C time (s)			Avg opt gap (%)		
	MIP	OBJ	DWB	MIP	OBJ	DWB	MIP	OBJ	DWB	
(10,10,100)	28/30	18/30	30 /30	\geq 65	≥298	2	0.04	0.03	0.00	
(10, 10, 200)	11/30	10/30	30 /30	\geq 424	\geq 457	6	0.27	0.09	0.00	
(10,10,300)	7/30	11/30	30 /30	\geq 489	\geq 454	41	0.21	0.09	0.00	
(25,10,100)	30 /30	30 /30	30 /30	$\overline{<}$ 1	1	< 1	0.00	0.00	0.00	
(25,10,200)	30 /30	30 /30	30 /30	2	25	< 1	0.00	0.00	0.00	
(25,10,300)	30 /30	29/30	30 /30	6	\geq 40	< 1	0.00	0.00	0.00	
(25,20,200)	29/30	9/30	30 /30	> 44	>499	3	0.02	0.08	0.00	
(25,20,300)	22/30	2/30	29 /30	>224	$\bar{>}590$	> 48	0.24	0.17	0.00	
(25,30,300)	1/30	0/30	0/30	\ge 595	\ge 600	\ge 600	0.84	0.53	0.40	

- MIP: original formulation
- OBJ: original formulation + objective cut
- DWB: original formulation + last-iteration DWB cuts

(Note: Even if we terminate early, we still obtain DWB cuts)

Strengthening DWB cuts

- DWB cuts have good computational performance, moreover,
- It is possible to strengthen the DWB cuts to further reduce dual degeneracy
- 1. Disjunctive coefficient strengthening
 - Variant of [Andersen and Pochet 2010]
 - Sequentially strengthen the coefficients of the cut
 - Each step requires solving one block MIP
- 2. Strengthening via tilting
 - Variant of local cuts [Chvatal et al. 2013]
 - Each tilting requires solving two sequences of block MIPs
 - (Depth-d) recursive tilting: one cutting plane \Rightarrow multiple (2^d) cutting planes

$\left(K , M , N \right)$	# solved instances			Avg B&C time (s)			Avg opt gap (%)		
	DWB	STR	D6T	DWB	STR	D6T	DWB	STR	D6T
(10,10,100) (10,10,200) (10,10,300)	30 /30 30 /30 30 /30	30 /30 30 /30 30 /30	30 /30 30 /30 30 /30	2 6 41	< 1 1 2	2 7 17	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00
(25,10,100) (25,10,200) (25,10,300) (25,20,200)	30 /30 30 /30 30 /30 30 /30	30 /30 30 /30 30 /30 30 /30	30 /30 30 /30 30 /30 30 /30	$< 1 \\ < 1 \\ < 1 \\ < 3$	$< 1 \\ < 1 \\ < 1 \\ < 2$	< 1 3 9 4	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00
(25,20,300) (25,30,300)	29/30 0/30	30 /30 2/30	30 /30 6 /30	${\geq\atop{\geq}600}$	5 ≥585	22 ≥559	0.00 0.40	0.00 0.31	0.00 0.19

- $\bullet\,$ STR: original formulation + last-iteration DWB cuts with disjunctive coefficient strengthening
- D6T: original formulation + last-iteration DWB cuts with disjunctive coefficient strengthening and tilting of depth 6

$\left(K , M , N \right)$	# B&C nodes							
	MIP	OBJ	DWB	STR	D6T			
(10,10,100)	≥ 22761	\geq 1698156	4481	151	1			
(10,10,200)	\geq 2778880	\geq 3898948	6828	258	8			
(10,10,300)	\geq 2616971	\geq 2781174	131139	495	5			
(25,10,100)	93	1123	1	1	1			
(25,10,200)	3853	20272	1	1	1			
(25,10,300)	8488	\geq 25864	1	1	1			
(25,20,200)	\geq 27987	\geq 438310	2255	335	1			
(25,20,300)	\geq 113353	\geq 410728	\geq 13861	1003	1			
(25,30,300)	\ge 81545	\geq 379999	\ge 105115	\geq 67556	\geq 6312			

- MIP: original formulation
- OBJ: original formulation + objective cut
- DWB: original formulation + last-iteration DWB cuts
- STR: original formulation + last-iteration DWB cuts with coeff. strengthening
- D6T: original formulation + last-iteration DWB cuts with coeff. strengthening and tilting of depth 6

Proposition

Assume $w^* \in \mathbb{R}^m_+$ is a dual basic optimal solution of an LP with n variables and m inequality constraints. Then, the optimal face of the LP has dimension at most $n - \|w^*\|_0$. Furthermore, if w^* is the unique dual optimal solution, then the optimal face of the LP has dimension exactly $n - \|w^*\|_0$.

Table: Relative Dual Degeneracy Levels $(1 - \|w^*\|_0/n)$ for Different Formulations

$\left(K , M , N \right)$	$(1 - \ w^*\ _0/n) imes$ 100%							
	MIP	OBJ	DWB	STR	D3T	D6T		
(10,10,100) (10,10,200) (10,10,300)	50.65% 53.30% 54.23%	99.91% 99.95% 99.97%	56.98% 53.77% 53.50%	35.05% 38.02% 39.77%	1.36% 7.19% 17.99%	1.54% 0.28% 0.61%		
(25,10,100) (25,10,200) (25,10,300) (25,20,200) (25,20,300) (25,20,300)	44.57% 49.75% 51.73% 52.44% 54.69% 55.68%	99.92% 99.96% 99.97% 99.98% 99.98%	40.47% 47.23% 56.84% 62.38% 62.72% 78.99%	30.85% 37.99% 48.89% 38.30% 42.19% 48.56%	3.70% 3.71% 8.05% 0.93% 4.78% 8.59%	3.70% 1.68% 1.17% 1.25% 0.62% 3.27%		

Using ML(!) to distinguish between easy and hard instances

Train:

- Run half of the MKAP instances with and without DWB cuts (10 min time limit)
- Record simple features: $z^{LP}, z^{LP+}, z^{DW}, z^{UB}$ and LB at termination for both
- Label instances if DW performs better (10% faster or better gap at termination)
- Run a shallow decision tree to obtain the simple rule:

DWB cuts are better if : $(z^{DW} - z^{LB})/z^{UB} > 0.05\%$

Test:

- On the rest, run DW on 1 thread and MIP in 3, stop when DW is done
- Allocate all processors to the more promising method

	MIP	DW-STR	HYB
Number of Instances Solved	113/155	133/155	134/155
Average Optimality Gap (%)	0.13%	0.05%	0.05%
Average Solution Time (s)	205	116	109

Time permitting: Solving the DW relaxation in practice

- We do not try to solve the DW relaxation (or, to generate cuts)
- Instead we solve the Lagrangian relaxation of

$$z^{DW} = \min \quad c^{\top} x$$

s.t. $y^{j} \in \operatorname{conv}(Q^{j}), \qquad j = 1, \dots, q,$
 $y^{j} = x_{I(j)}, \qquad j = 1, \dots, q, \qquad (\pi^{j})$
 $Ax \ge b \qquad (\beta)$

After dualizing the coupling constraints

$$z^{DW} = \max_{\beta \ge 0, \pi} z(\pi, \beta)$$

where

$$z(\pi,\beta) = \min \qquad \overbrace{c^{\top}x + \beta^{\top}(b - Ax)}^{\text{coefficients of } x \text{ must be } 0} + \sum_{j=1}^{q} (\pi^j)^{\top} (y^j - x_{I(j)}),$$

s.t.
$$y^j \in Q^j, \quad j = 1, \dots, q$$

• Az $z(\pi,\beta)$ is a piecewise linear concave function, computing z^{DW} is a (nonsmooth) convex optimization problem

Time permitting: Computing (last-iteration) cuts in practice

$$z^{DW} = \max_{\beta \ge 0, \pi} z(\pi, \beta) \quad \text{s.t.} \quad \sum_{j: i \in I(j)} \pi_i^j + \beta^\top A_i = c_i, \quad i = 1, \dots, n,$$

where

$$z(\pi, \beta) = \min \quad \beta^{\top}b \; + \; \sum_{j=1}^{q} (\pi^j)^{\top}y^j, \quad \text{s.t.} \; y^j \in Q^j, \quad j = 1, \dots, q$$

(We use the level method to update π and β for better computational performance)

We can show that at any iteration τ we have

$$z(\pi(\tau),\beta(\tau)) \leq \min c^{\top}x$$

s.t. $(\pi^{j}(\tau))^{\top}x_{I(j)} \geq D_{j}(\pi^{j}(\tau)) \quad \longleftarrow \min\{(\pi^{j})^{\top}v : v \in Q^{j}\}$
$$Ax \geq b$$

- If the Lagrangian dual is solved to optimality, we have cuts that recover z^{DW}
- If terminated early, we have a set of cuts recovering the current dual bound

Thank you!

Contact: rui.chen@cornell.edu

Reference:

Chen, R., Günlük, O. and Lodi, A., 2024. Recovering Dantzig–Wolfe Bounds by Cutting Planes. *Operations Research*.

Algorithm The Level Method for Solving Lagrangian Dual

- 1: Initialize:
 - $\hat{V}^{j} \leftarrow \emptyset, \ \hat{R}^{j} \leftarrow \emptyset, \ j = 1, 2, \dots, p$ $\bar{z} \leftarrow$ an upper bound of z_D
 - $LB \leftarrow -\infty, UB \leftarrow \infty, t \leftarrow 0$
- 2: Main Loop: $t \leftarrow t + 1$, solve:

$$\mathsf{UB} \leftarrow \max \sum_{j=1}^{q} \theta_j + b^\top \beta \tag{1a}$$

s.t.
$$\theta_j \leq v^\top \pi^j$$
, $v \in \hat{V}^j$, $j = 1, \dots, q$, (1b)

$$r^{\top}\pi^{j} \ge 0,$$
 $r \in \hat{R}^{j}, \ j = 1, \dots, q,$ (1c)

$$\sum_{j=1}^{q} \theta_j + b^{\top} \beta \leq \bar{z}, \qquad (\text{some known UB on } z^{DW}) \tag{1d}$$

$$\sum_{j:i\in I(j)} \pi_i^j + \beta^\top A_i = c_i, \qquad \qquad i = 1,\dots, n, \tag{1e}$$

$$i \in I(j)$$
 (1g)

$$\beta \ge 0.$$
 (1f)

- 3: if $LB = -\infty$ then
- 4: $(\bar{\pi}, \bar{\beta}) \leftarrow \text{optimal value of } (\pi, \beta) \text{ in (1)}$
- 5: else 6: solve:

7: (π 8: end if

solve:

$$\min \| (\pi - \bar{\pi}, \beta - \bar{\beta}) \|_{2}^{2}$$
s.t.
$$\sum_{j=1}^{q} \theta_{j} + b^{\top} \beta \geq 0.7 \cdot \text{UB} + 0.3 \cdot \text{LB}$$
(2)
(1b) - (1g)
($\bar{\pi}, \bar{\beta}$) \leftarrow optimal value of (π, β) in (2)
d if

Algorithm The Level Method for Solving Lagrangian Dual - continued

```
1: for j = 1, 2, \ldots, q do
          solve pricing problem for \pi^j = \bar{\pi}^j
 2:
         if bounded then
 3:
               let v^j denote an optimal solution
 4:
              \hat{V}^j \leftarrow \hat{V}^j \cup \{v^j\}
 5.
         else
 6:
               let r^j denote an extreme ray of \operatorname{conv}(Q^j) with (\pi^j)^{\top}r^j < 0
 7.
              \hat{R}^j \leftarrow \hat{R}^j \cup \{r^j\}
 8.
          end if
 9:
10: end for
11: LB \leftarrow \max \{ \mathsf{LB}, \sum_{i=1}^{q} D_i(\bar{\pi}^j) + b^{\top}\bar{\beta} \}
12: if UB-LB is small enough then
          return I B
13:
14: else
         go to step 2
15:
16: end if
```