
Introduction to cutting planes for mixed integer
linear (nonlinear) programs

Santanu S. Dey

June 2024



Section 1

Introduction

2



Cuts: obtaining better dual bounds

Mixed integer linear program

zOPT := max c⊤x
s.t. Ax ≤ b (convex constraints)

x ∈ Zn1 × Rn2 . (non-convex constraints)

1. Feasible solution x̂ : (c⊤x̂) provides a lower bound on zOPT.

2. Solving convex (LP) relaxation gives (standard) dual (upper) bound
(zLP).

3. Perfect dual bound (zOPT) comes from solving convex hull of
feasible region .

4. Improving LP dual bound by adding cutting-planes.
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s.t. Ax ≤ b (convex constraints)

x ∈ Zn1 × Rn2 . (non-convex constraints)

1. Feasible solution x̂ : (c⊤x̂) provides a lower bound on zOPT.

2. Solving convex (LP) relaxation gives (standard) dual (upper) bound
(zLP).

zLP := max c⊤x
s.t. Ax ≤ b (convex constraints)

x ∈ Rn1 × Rn2 . (((((((((((hhhhhhhhhhnon-convex constraints)

zLP ≥ zOPT ≥ c⊤x̂

3. Perfect dual bound (zOPT) comes from solving convex hull of
feasible region .

4. Improving LP dual bound by adding cutting-planes.
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s.t. Ax ≤ b (convex constraints)

x ∈ Zn1 × Rn2 . (non-convex constraints)
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2. Solving convex (LP) relaxation gives (standard) dual (upper) bound
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3. Perfect dual bound (zOPT) comes from solving convex hull of
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s.t. x ∈ conv({x ∈ Zn1 × Rn2 |Ax ≤ b}) (convex hull)
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Cuts: obtaining better dual bounds

Mixed integer linear program

zOPT := max c⊤x
s.t. Ax ≤ b (convex constraints)

x ∈ Zn1 × Rn2 . (non-convex constraints)

1. Feasible solution x̂ : (c⊤x̂) provides a lower bound on zOPT.

2. Solving convex (LP) relaxation gives (standard) dual (upper) bound
(zLP).

3. Perfect dual bound (zOPT) comes from solving convex hull of
feasible region .

4. Improving LP dual bound by adding cutting-planes.

zLP+CUTS := max c⊤x
s.t. Ax ≤ b (convex constraints)

Ãx ≤ b̃ (valid for convex hull – Cuts)
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Cuts: obtaining better dual bounds

Mixed integer linear program

zOPT := max c⊤x
s.t. Ax ≤ b (convex constraints)

x ∈ Zn1 × Rn2 . (non-convex constraints)

1. Feasible solution x̂ : (c⊤x̂) provides a lower bound on zOPT.

2. Solving convex (LP) relaxation gives (standard) dual (upper) bound
(zLP).

3. Perfect dual bound (zOPT) comes from solving convex hull of
feasible region .

4. Improving LP dual bound by adding cutting-planes.

zLP ≥ zLP+CUTS ≥ zOPT ≥ c⊤x̂
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An integer program: feasible region

P	∩ #!
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An integer program: objective function

c
x$"x
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An integer program: optimal solution

Optimal 
Solution

$"x
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An integer program: dual bound from LP relaxation

Optimal 
LP 
Solution
Gives
Upper 
bound

$"x
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An integer program: perfect dual bound from convex hull

Convex 
hull

Upper 
Bound
= Lower 
Bound$"x
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An integer program: improved dual bound using
cutting-plane(s)

Cutting
-plane

$"x
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Why linear inequalities is a reasonable choice:
Fundamental theorem of integer programming

Theorem ([Meyer (1974)])
Let S := {x ∈ Zn1 × Rn2 |Ax ≤ b}. If A and b is rational, then conv(S)
is a rational polyhedron.

P	∩ #!

Convex 
hull

▶ Also adding linear cutting-plane, means we need to only solve
modified LPs with dual simplex.

▶ Generalization of the above result for integer points in general
convex set: [D., Morán (2013)]
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How to generate cutting-planes?

▶ Geometric ideas: Split Disjunctive cuts, Chvátal-Gomory Cuts,
maximal lattice-free cuts.

▶ Subadditive inequalities: Gomory mixed integer cut.

▶ Cuts using algebraic properties: Extended formulations.

▶ Cut from structured relaxations: Boolean quadric polytope, Clique
cuts, Mixed integer rounding inequalities, Lifted cover, Flow cover,
Mixing inequalities, . . . .

▶ Lifting: A technique to generate, rotate and strengthen inequalities.
(Not covering this technique here)

▶ . . .
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Section 2

Geometric Ideas

18



2.1
Split disjunctive cuts



Split disjunctive cuts

[Balas (1979)][Cook, Kannan, Schrijver (1990)]

▶ Let P ⊆ Rn be a set and we are interested
in obtaining valid inequality for P ∩ Zn.

P	∩ #!
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Split disjunctive cuts

[Balas (1979)][Cook, Kannan, Schrijver (1990)]
▶ Let P ⊆ Rn be a set and we are interested

in obtaining valid inequality for P ∩ Zn.

▶ Let π ∈ Zn and π0 ∈ Z.

▶ Since

Zn ∩ {x ∈ Rn |π0 < π⊤x < π0 + 1}︸ ︷︷ ︸
Split disjunctive set

= ∅.

c
x

$x  ≥ %0 + 1
 

$x  ≤ %0 
 

%0  < $x < %0 + 1 
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▶ Let P ⊆ Rn be a set and we are interested in

obtaining valid inequality for P ∩ Zn.

▶ Let π ∈ Zn and π0 ∈ Z.
▶ Since

Zn ∩ {x ∈ Rn |π0 < π⊤x < π0 + 1}︸ ︷︷ ︸
Split disjunctive set

= ∅.

▶ If α⊤x ≤ β is valid for:

▶ P ∩ {x ∈ Rn |π⊤x ≤ π0}, and
▶ P ∩ {x ∈ Rn |π⊤x ≥ π0 + 1}, then

α⊤x ≤ β,

is valid inequality for

Pπ,π0 := conv
((

P ∩
{
x ∈ Rn

∣∣∣π0 ≥ π⊤x
})

∪
(
P ∩

{
x ∈ Rn

∣∣∣π⊤x ≥ π0 + 1
}))

and therefore also for: P ∩ Zn.

c
x

$x  ≥ %0 + 1
 

$x  ≤ %0 
 

%0  < $x < %0 + 1 
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Special-case: Chvátal-Gomory Cuts

[Gomory (1958)]

▶ If (WLOG) P ∩ {x ∈ Rn |π⊤x ≥ π0 + 1} = ∅, then π⊤x ≤ π0 is a
valid inequality for P ∩ Zn.

P	∩ #!

$x  ≥ %0 + 1
 $x  ≤ %0 

 

Follow-up work: [Schrijver (1980)], [Dadush, D., Vielma (2014)],
[Cornuéjols, Lee (2018)]
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Main take aways

▶ Given a set P, find a set
lattice-free set T such that

int(T ) ∩ Zn = ∅.

(in fact it is enough to satisfy

P ∩ int(T ) ∩ Zn = ∅).

▶ Find an inequality valid

α⊤x ≤ β,

valid for

P \ int(T ).

▶ What type of lattice-free
set T considered?

▶ non-convex?
▶ convex?
▶ polyhedral?

▶ How is the valid inequality
found?

▶ Valid inequality for
conv(P \ int(T )).

▶ Closed-form
“formula”?
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1.2
Generalizations of split disjunctive cuts



Types of lattice-free T sets I: non-convex

▶ Asymmetric [Dash, D., Günlük (2012)].

1

2

3

▶ Union of split disjunctions [Li, Richard (2008)], [Dash et al.
(2013)], [Dash, Günlük, Morán (2013)]

▶ Divides the feasible region into smaller polyhedral sets whose union
contains all the integer points.
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Types of lattice-free T sets I: non-convex
▶ Asymmetric [Dash, D., Günlük (2012)].

▶ Union of split disjunctions [Li, Richard (2008)], [Dash et al.
(2013)], [Dash, Günlük, Morán (2013)]

1
2

3

4
▶ Divides the feasible region into smaller polyhedral sets whose union

contains all the integer points. 34



Types of lattice-free T sets II: convex

[Lovász (1989)]

▶ T is a convex set that does not contain integers in its interior:
Lattice-free convex set.

▶ Lattice-free cuts can give the convex hull of the mixed-integer
feasible solutions. Picture proof:
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Types of lattice-free T sets II: convex
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Convex 
hull
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Types of lattice-free T sets II: convex
[Lovász (1989)]

▶ T is a convex set that does not contain integers in its interior:
Lattice-free convex set.

▶ Lattice-free cuts can give the convex hull of the mixed-integer
feasible solutions. Picture proof:

Convex 
hull38



Maximal lattice-free convex set

▶ Clearly larger the lattice-free convex set T , we expect to find better
inequality.

P
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Maximal lattice-free convex set

▶ Clearly larger the lattice-free convex set T , we expect to find better
inequality.

P
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Maximal lattice-free convex set

▶ Clearly larger the lattice-free convex set T , we expect to find better
inequality.

Definition (Maximal Lattice-free convex set)
We say T ⊆ Rn is a maximal lattice-free convex set if T ′ ⊆ Rn is a lattice-free
convex set and T ′ ⊇ T , implies T ′ = T .
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Maximal lattice-free convex set

▶ Clearly larger the lattice-free convex set T , we expect to find better
inequality.

Definition (Maximal Lattice-free convex set)
We say T ⊆ Rn is a maximal lattice-free convex set if T ′ ⊆ Rn is a lattice-free
convex set and T ′ ⊇ T , implies T ′ = T .

Theorem ([Lovász (1989)], [Basu, Conforti, Cornuéjols,
Conforti (2010)])
All maximal lattice-free convex sets are polyhedral. Moreover, a full-dimension
lattice-free convex set is maximal iff it is a lattice-free polyhedron with integer
point in the relative interior of it facets.
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Maximal lattice-free convex set

Maximal Lattice-
free convex set

Not Maximal 
Lattice-free 
convex set
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Generalization of maximal lattice-free sets

P

44



Generalization of maximal lattice-free sets

P

S-Free 
convex 
set 

S = P	∩ #!
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Generalization of maximal lattice-free sets

Definition (Maximal S-free convex set; [Johnson (1983)], [D.,
Wolsey (2010)])
Let S = P ∩ Zn, where P is a convex set. We say:

▶ T is a convex S-free set, if int(T ) ∩ S = ∅.
▶ T ⊆ Rn is a maximal S-free convex set if T ′ ⊆ Rn is a S-free

convex set and T ′ ⊇ T , implies T ′ = T .
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Generalization of maximal lattice-free sets

Definition (Maximal S-free convex set; [Johnson (1983)], [D.,
Wolsey (2010)])
Let S = P ∩ Zn, where P is a convex set. We say:

▶ T is a convex S-free set, if int(T ) ∩ S = ∅.
▶ T ⊆ Rn is a maximal S-free convex set if T ′ ⊆ Rn is a S-free

convex set and T ′ ⊇ T , implies T ′ = T .

Theorem ([D., Morán (2011)])
All maximal S-free convex sets are polyhedral.
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Polyhedrality of maximal lattice-free sets is useful

▶ Let maximal lattice-free (or S-free) set be
T := {x ∈ Rn | (g i )⊤x ≥ hi i ∈ [m]}.

▶ If α⊤x ≤ β is valid for the disjunction:

m∨
i=1

P ∩

x ∈ Rn | (g i )⊤x ≤ hi︸ ︷︷ ︸
complement of a facet of T

 ,

then α⊤x ≤ β is a valid inequality for P ∩ Zn.

▶ One approach to find inequality α⊤x ≤ β to separate x∗:

▶ See [Balas, Perregaard: (2003)] for a method to generate cuts for split
disjunctions with just one copy of variables (instead of two copies).
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Polyhedrality of maximal lattice-free sets is useful

▶ Let maximal lattice-free (or S-free) set be
T := {x ∈ Rn | (g i )⊤x ≥ hi i ∈ [m]}.

▶ If α⊤x ≤ β is valid for the disjunction:

m∨
i=1

P ∩

x ∈ Rn | (g i )⊤x ≤ hi︸ ︷︷ ︸
complement of a facet of T

 ,

then α⊤x ≤ β is a valid inequality for P ∩ Zn.

▶ One approach to find inequality α⊤x ≤ β to separate x∗:

maxα,β α⊤x∗ − β

s.t. αx ≤ β is valid for
(
P ∩ {x ∈ Rn | (g i )⊤x ≤ hi}

)
∀i ∈ [m]

▶ See [Balas, Perregaard: (2003)] for a method to generate cuts for split
disjunctions with just one copy of variables (instead of two copies).
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Polyhedrality of maximal lattice-free sets is useful
▶ Let maximal lattice-free (or S-free) set be

T := {x ∈ Rn | (g i )⊤x ≥ hi i ∈ [m]}.
▶ If α⊤x ≤ β is valid for the disjunction:

m∨
i=1

P ∩

x ∈ Rn | (g i )⊤x ≤ hi︸ ︷︷ ︸
complement of a facet of T

 ,

then α⊤x ≤ β is a valid inequality for P ∩ Zn.

▶ One approach to find inequality α⊤x ≤ β to separate x∗: Use Farkas
Lemma:

maxα,β,λ,µ α⊤x∗ − β

s.t.
α⊤ = (λi )⊤A+ µi · (g i )⊤ ∀i ∈ [m]
β ≥ (λi )⊤b + µi · hi ∀i ∈ [m]

λi ≥ 0, µi ≥ 0 ∀i ∈ [m]

Cone

Normalization constraint: either bound α or β.

▶ See [Balas, Perregaard: (2003)] for a method to generate cuts for split
disjunctions with just one copy of variables (instead of two copies).

53



Polyhedrality of maximal lattice-free sets is useful
▶ Let maximal lattice-free (or S-free) set be

T := {x ∈ Rn | (g i )⊤x ≥ hi i ∈ [m]}.
▶ If α⊤x ≤ β is valid for the disjunction:

m∨
i=1

P ∩

x ∈ Rn | (g i )⊤x ≤ hi︸ ︷︷ ︸
complement of a facet of T

 ,

then α⊤x ≤ β is a valid inequality for P ∩ Zn.

▶ One approach to find inequality α⊤x ≤ β to separate x∗: Use Farkas
Lemma:

maxα,β,λ,µ α⊤x∗ − β

s.t.
α⊤ = (λi )⊤A+ µi · (g i )⊤ ∀i ∈ [m]
β ≥ (λi )⊤b + µi · hi ∀i ∈ [m]

λi ≥ 0, µi ≥ 0 ∀i ∈ [m]

Cone

Normalization constraint: either bound α or β.

▶ See [Balas, Perregaard: (2003)] for a method to generate cuts for split
disjunctions with just one copy of variables (instead of two copies).

54



Final comments

▶ A major topic of study 2005-2015: [Andersen, Louveaux,
Weismantel, Wolsey (2007)], [Borozan Cornuéjols (2009)], [D.
Wolsey (2010)] [Del Pia Weismantel (2012)], . . .

▶ This is very general paradigm: See, for example,
▶ Disjunctive ideas to get convex hull of QCQPs: [Tawarmalani,

Richard, Chung (2010)], [D., Santana (2020)]
▶ Intersection cuts for non-convex quadratically constrained

quadratic programs. [Bienstock, Chen, Muñoz (2020)],
[Muñoz, Serrano (2022)], [Chmiela, Muñoz, Serrano (2022)],
[Muñoz, Paat, Serrano (2023)].

▶ The real challenge is how to select the lattice-free set.
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Section 3

Subadditive cutting-planes
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A simple observation
▶ Subbaditive function: A function f : Rm → R is called subadditive if:

f (u) + f (v) ≥ f (u + v) for all u, v ∈ Rm.

▶ Non-decreasing function: A function f : Rm → R is called non-decreasing
if:

f (u) ≤ f (v) for all u ≤ v .

Theorem ([Gomory, Johnson (1972ab)], [Jeroslow
(1978)][Jeroslow (1979)], [Blair, Jeroslow (1982)])

Let S :=

{
x ∈ Rn

+

∣∣∣∣∣
n∑

j=1

Ajxj ≥ b, x ∈ Zn

}
,

where Aj ∈ Rm for j ∈ [n] and b ∈ Rm. Let f : Rm → R be a subadditive
function, non-decreasing, such that f (0) = 0, then

n∑
j=1

f (Aj)xj ≥ f (b),

is a valid inequality for S .
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f (u) + f (v) ≥ f (u + v) for all u, v ∈ Rm.

▶ Non-decreasing function: A function f : Rm → R is called non-decreasing
if:

f (u) ≤ f (v) for all u ≤ v .

Theorem ([Gomory, Johnson (1972ab)], [Jeroslow
(1978)][Jeroslow (1979)], [Blair, Jeroslow (1982)])

Let S :=

{
x ∈ Rn

+

∣∣∣∣∣
n∑

j=1

Ajxj ≥ b, x ∈ Zn

}
,

where Aj ∈ Rm for j ∈ [n] and b ∈ Rm. Let f : Rm → R be a subadditive
function, non-decreasing, such that f (0) = 0, then

n∑
j=1

f (Aj)xj ≥ f (b),

is a valid inequality for S .
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Example of subadditive function

Consider the following set:

S :=

x ∈ Z3
+

∣∣∣∣∣∣
 1

1
0

x1 +
 1

0
1

x2 +
 1

0
1

x3 ≥

 1
1
1
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Example of subadditive function

Consider the following set:

S :=

x ∈ Z3
+

∣∣∣∣∣∣
 1

1
0

x1 +
 1

0
1

x2 +
 1

0
1

x3 ≥

 1
1
1


Consider the function f : R3 → R:

f (u) = ⌈0.5 · (u1 + u2 + u3)⌉

This function is

▶ subadditive,

▶ non-decreasing,

▶ and f (0) = 0.

62



Example of subadditive function

Consider the following set:

S :=

x ∈ Z3
+

∣∣∣∣∣∣
 1

1
0

x1 +
 1

0
1

x2 +
 1

0
1

x3 ≥

 1
1
1


Consider the function f : R3 → R:

f (u) = ⌈0.5 · (u1 + u2 + u3)⌉

This function is

▶ subadditive,

▶ non-decreasing,

▶ and f (0) = 0.

So we have the following valid inequality for S:

f

 1
1
0

x1 + f

 1
0
1

x2 + f

 0
1
1

x3 ≥ f

 1
1
1
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Example of subadditive function

Consider the following set:

S :=

x ∈ Z3
+

∣∣∣∣∣∣
 1

1
0

x1 +
 1

0
1

x2 +
 1

0
1

x3 ≥

 1
1
1


Consider the function f : R3 → R:

f (u) = ⌈0.5 · (u1 + u2 + u3)⌉

This function is

▶ subadditive,

▶ non-decreasing,

▶ and f (0) = 0.

Equivalently:

x1 + x2 + x3 ≥ 2,

which is a facet-defining inequity for conv(S).
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Mixed integer version

Theorem ([Gomory, Johnson (1972ab)])
Consider the set:

S :=

{
x ∈ Rn

+

∣∣∣∣∣
n∑

j=1

Ajxj ≥ b, xj ∈ Z j ∈ I

}
,

where Aj ∈ Rm for j ∈ [n] and b ∈ Rm.

▶ Let f : Rm → R be a subadditive function, non-decreasing, such that
f (0) = 0, and

▶ Let f̄ (u) := lim supϵ→0+

(
f (uϵ)

ϵ

)
︸ ︷︷ ︸
Slope of f at origin in u direction

. Let f̄ (Aj) < ∞ for all Aj ∈ [n] \ I ,

then

∑
j∈I

f (Aj)xj +
∑

j∈[n]\I

f̄ (Aj)xj ≥ f (b),

is a valid inequality for S .

65



Mixed integer version

Theorem ([Gomory, Johnson (1972ab)])
Consider the set:

S :=

{
x ∈ Rn

+

∣∣∣∣∣
n∑

j=1

Ajxj ≥ b, xj ∈ Z j ∈ I

}
,

where Aj ∈ Rm for j ∈ [n] and b ∈ Rm.

▶ Let f : Rm → R be a subadditive function, non-decreasing, such that
f (0) = 0, and

▶ Let f̄ (u) := lim supϵ→0+

(
f (uϵ)

ϵ

)
︸ ︷︷ ︸
Slope of f at origin in u direction

. Let f̄ (Aj) < ∞ for all Aj ∈ [n] \ I ,

then

∑
j∈I

f (Aj)xj +
∑

j∈[n]\I

f̄ (Aj)xj ≥ f (b),

is a valid inequality for S .
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Mixed integer version - variants

Theorem ([Gomory, Johnson (1972)])
Consider the set:

S :=

x ∈ Rn
+

∣∣∣∣∣∣
n∑

j=1

Ajxj���
=

≥b, xj ∈ Z j ∈ I

 .

where Aj ∈ Rm for j ∈ [n] and b ∈ Rm. Let

▶ Let f : Rm → R be a sub-additive function,(((((((hhhhhhhnon-decreasing, such
that f (0) = 0, and

▶ Let f̄ (u) := lim supϵ→0+

(
f (uϵ)
ϵ

)
. Let f̄ (Aj) < ∞ for all Aj ∈ [n] \ I ,

then ∑
j∈I

f (Aj)xj +
∑

j∈[n]\I

f̄ (Aj)xj ≥ f (b)

67



A very very special sub-additive function: Gomory mixed
integer cut (GMIC)

[Gomory, Johnson (1972ab)]

▶ S :=
{
(x , y) ∈ Zn1

+ × Rn2
+ |
∑n1

j=1 ajxj +
∑n2

i=1 diyi = b
}
.

▶ Let frc(a) = a− ⌊a⌋.

▶ f GMIC (u) = min
{

frc(u)
frc(b)

, 1−frc(u)
1−frc(b)

}
, f GMIC (u) =

{
u/frc(b) u ≥ 0

(−u)/(1− frc(b)) u ≤ 0

0 1-1 frc(b)

1

▶ Gomory-mixed integer cut:∑
j∈[n1],frc(aj )≤frc(b)

frc(aj)

frc(b)
xj +

∑
j∈[n1],frc(aj )≥frc(b)

1− frc(aj)

1− frc(b)
xj

∑
i∈[n2],di≥0

di
frc(b)

+
∑

i∈[n2],di≤0

−di
1− frc(b)

≥ 1.
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A very very special sub-additive function: Gomory mixed
integer cut (GMIC)

[Gomory, Johnson (1972ab)]

▶ S :=
{
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+ × Rn2
+ |
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di
frc(b)

+
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A very very special sub-additive function: Gomory mixed
integer cut (GMIC)

[Gomory, Johnson (1972ab)]

▶ S :=
{
(x , y) ∈ Zn1

+ × Rn2
+ |
∑n1

j=1 ajxj +
∑n2

i=1 diyi = b
}
.

▶ Let frc(a) = a− ⌊a⌋.

▶ f GMIC (u) = min
{

frc(u)
frc(b)

, 1−frc(u)
1−frc(b)

}
, f GMIC (u) =

{
u/frc(b) u ≥ 0

(−u)/(1− frc(b)) u ≤ 0

0 1-1 frc(b)

1

▶ Gomory-mixed integer cut:∑
j∈[n1],frc(aj )≤frc(b)

frc(aj)

frc(b)
xj +

∑
j∈[n1],frc(aj )≥frc(b)

1− frc(aj)

1− frc(b)
xj

∑
i∈[n2],di≥0

di
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+
∑
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−di
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A zoo of subadditive functions

A Family of Facets
for

Multiple-Constraint
Infinite Group

Relaxation of MIPs

Motivation

Group Approach

A Simple Family:
Aggregation

Lifting-Space
(Superadditive)
Representation of
Group Cuts

Sequential-Merge
Operator
Sequential-Merge
Procedure

Facets of High-Dimensional
Group Problems

Conclusion

Examples of Sequential-Merge Inequalities
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▶ Functions, functions, and more functions: [Letchford and Lodi (2002)],
[Gomory, Johnson (2003)], [Dash, Günlük (2006)], [D., Richard (2008)],
[Kianfar, Fathi (2009)], [Richard, Li, Miller (2009)], [D., Richard (2010)],
[D., Richard, Li, Miller (2010)], [Chen (2011)], [Basu, Conforti, Paat
(2018)], [Basu, Conforti, Di Summa (2020)] . . .

▶ ‘Properties’ of these function: [D., Richard (2008)], [Basu, Conforti,
Cornuéjols, Zambelli (2010)], [Cornuéjols and Molinaro (2024)], [Basu, R.
Hildebrand, Köppe (2014abcd)] [Basu, Hildebrand, Köppe, Molinaro
(2013)], [Köppe, Zhou (2017)], [Di Summa (2020)] . . .

▶ Automatic search of these functions: [Köppe, Zhou (2016)] and follow up
work.

▶ Some review articles: [D., Richard (2010)], [Basu, Hildebrand, Köppe
(2015)].
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A zoo of subadditive functions

▶ Functions, functions, and more functions: [Letchford and Lodi (2002)],
[Gomory, Johnson (2003)], [Dash, Günlük (2006)], [D., Richard (2008)],
[Kianfar, Fathi (2009)], [Richard, Li, Miller (2009)], [D., Richard (2010)],
[D., Richard, Li, Miller (2010)], [Chen (2011)], [Basu, Conforti, Paat
(2018)], [Basu, Conforti, Di Summa (2020)] . . .

▶ ‘Properties’ of these function: [D., Richard (2008)], [Basu, Conforti,
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(2013)], [Köppe, Zhou (2017)], [Di Summa (2020)] . . .

▶ Automatic search of these functions: [Köppe, Zhou (2016)] and follow up
work.

▶ Some review articles: [D., Richard (2010)], [Basu, Hildebrand, Köppe
(2015)].
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A zoo of subadditive functions

▶ Functions, functions, and more functions: [Letchford and Lodi (2002)],
[Gomory, Johnson (2003)], [Dash, Günlük (2006)], [D., Richard (2008)],
[Kianfar, Fathi (2009)], [Richard, Li, Miller (2009)], [D., Richard (2010)],
[D., Richard, Li, Miller (2010)], [Chen (2011)], [Basu, Conforti, Paat
(2018)], [Basu, Conforti, Di Summa (2020)] . . .

▶ ‘Properties’ of these function: [D., Richard (2008)], [Basu, Conforti,
Cornuéjols, Zambelli (2010)], [Cornuéjols and Molinaro (2024)], [Basu, R.
Hildebrand, Köppe (2014abcd)] [Basu, Hildebrand, Köppe, Molinaro
(2013)], [Köppe, Zhou (2017)], [Di Summa (2020)] . . .

▶ Automatic search of these functions: [Köppe, Zhou (2016)] and follow up
work.

▶ Some review articles: [D., Richard (2010)], [Basu, Hildebrand, Köppe
(2015)].
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How good are these “subadditive cuts”?

Theorem ([Jeroslow (1978)], [Jeroslow (1979)], [Johnson
(1973)], [Johnson (1974)], [Johnson (1979)] )
Consider the set:

S :=

x ∈ Rn
+

∣∣∣∣∣∣
n∑

j=1

Ajxj ≥ b, xj ∈ Z j ∈ I

 ,

where all the data is rational. Then the convex hull of S can be obtained using
inequalities generated by non-decreasing, subadditive functions (with f (0) = 0).
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How good are these “subadditive cuts”?

Theorem ([Jeroslow (1978)], [Jeroslow (1979)], [Johnson
(1973)], [Johnson (1974)], [Johnson (1979)] )
Consider the set:

S :=

x ∈ Rn
+

∣∣∣∣∣∣
n∑

j=1

Ajxj ≥ b, xj ∈ Z j ∈ I

 ,

where all the data is rational. Then the convex hull of S can be obtained using
inequalities generated by non-decreasing, subadditive functions (with f (0) = 0).

Only a particular type of subadditive functions called as Chvátal functions are
necessary for the above result: [Blair, Jeroslow (1982)], [Basu, Martin, Ryan, Wang
(2019)]
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How good are these “subadditive cuts”?

Theorem ([Jeroslow (1978)], [Jeroslow (1979)], [Johnson
(1973)], [Johnson (1974)], [Johnson (1979)] )
Consider the set:

S :=

x ∈ Rn
+

∣∣∣∣∣∣
n∑

j=1

Ajxj ≥ b, xj ∈ Z j ∈ I

 ,

where all the data is rational. Then the convex hull of S can be obtained using
inequalities generated by non-decreasing, subadditive functions (with f (0) = 0).

Theorem (Wolsey [1981])
Consider the set:

S(b) :=

x ∈ Zn
+

∣∣∣∣∣∣
n∑

j=1

Ajxj = b,

 .

For A fixed, there is a finite list of subadditive functions that give the convex hull of
S(b) for all b.
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How good are these “subadditive cuts”?

Theorem ([Jeroslow (1978)], [Jeroslow (1979)], [Johnson
(1973)], [Johnson (1974)], [Johnson (1979)] )
Consider the set:

S :=

x ∈ Rn
+

∣∣∣∣∣∣
n∑

j=1

Ajxj ≥ b, xj ∈ Z j ∈ I

 ,

where all the data is rational. Then the convex hull of S can be obtained using
inequalities generated by non-decreasing, subadditive functions (with f (0) = 0).

Theorem ([D., Morán, Vielma (2012)] )
Consider the set:

S :=

x ∈ Rn
+

∣∣∣∣∣∣
n∑

j=1

Ajxj ⪰K b, xj ∈ Z j ∈ I

 ,

where K is a proper cone and there exists a strictly feasible solution x̂ . Then the
convex hull of S can be obtained using inequalities generated by non-decreasing
(appropriately defined wrt K), subadditive functions (with f (0) = 0).

Follow-up: [Kocuk, Morán (2019)]
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Any connection between maximal lattice-free convex cuts
and subadditive cuts?

▶ We can obtain the convex hull using maximal lattice-free convex cuts and also

subadditive cuts — is there a connection?

YES!
One relationship via “intersection cuts” viewpoint of the lattice-free convex cuts for
the set, {x ∈ Zm, z ∈ Zn1

+ , y ∈ Rn2
+ , | x = b+Az +Gy}. Cuts in (y , z)-space (Sketch):

Subbadditive function (f)

y (
Slope of f: limϵ→0+

f (uϵ)

ϵ

)

f̄ Subadditive and sublinear function

y (
T = {x |f̄ (x − v) ≤ 1}

)
a

A lattice-free convex set T around fractional point v

From f̄ to lattice-free convex set: [Borozan Cornuéjols (2009)], [Conforti et al.(2015)]

a
With proper scaling of f̄
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Any connection between maximal lattice-free convex cuts
and subadditive cuts?

▶ We can obtain the convex hull using maximal lattice-free convex cuts and also

subadditive cuts — is there a connection?YES!
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Subbadditive function (f)
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Slope of f: limϵ→0+
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ϵ

)

f̄ Subadditive and sublinear function
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T = {x |f̄ (x − v) ≤ 1}

)
a

A lattice-free convex set T around fractional point v

From f̄ to lattice-free convex set: [Borozan Cornuéjols (2009)], [Conforti et al.(2015)]

a
With proper scaling of f̄
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Any connection between maximal lattice-free convex cuts
and subadditive cuts?
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Any connection between maximal lattice-free convex cuts
and subadditive cuts?
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Any connection between maximal lattice-free convex cuts
and subadditive cuts?

▶ We can obtain the convex hull using maximal lattice-free convex cuts and also

subadditive cuts — is there a connection?YES!
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)
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A lattice-free convex set T around fractional point v
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Any connection between maximal lattice-free convex cuts
and subadditive cuts?

▶ We can obtain the convex hull using maximal lattice-free convex cuts and also
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Any connection between maximal lattice-free convex cuts
and subadditive cuts?

▶ We can obtain the convex hull using maximal lattice-free convex cuts and also

subadditive cuts — is there a connection?YES!
One relationship via “intersection cuts” viewpoint of the lattice-free convex cuts for
the set, {x ∈ Zm, z ∈ Zn1
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+ , | x = b+Az +Gy}. Cuts in (y , z)-space (Sketch):

Subbadditive function (f)

y (
Slope of f: limϵ→0+

f (uϵ)

ϵ

)
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y (
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)
a

A lattice-free convex set T around fractional point v

From f̄ to lattice-free convex set: [Borozan Cornuéjols (2009)], [Conforti et al.(2015)]

a
With proper scaling of f̄
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Any connection between maximal lattice-free convex cuts
and subadditive cuts?

▶ We can obtain the convex hull using maximal lattice-free convex cuts and also

subadditive cuts — is there a connection? YES!
One relationship via “intersection cuts” viewpoint of the lattice-free convex cuts for
the set, {x ∈ Zm, z ∈ Zn1

+ , y ∈ Rn2
+ , | x = b+Az +Gy}. Cuts in (y , z)-space (Sketch):

A lattice-free convex set T around fractional point v
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Any connection between maximal lattice-free convex cuts
and subadditive cuts?

▶ We can obtain the convex hull using maximal lattice-free convex cuts and also

subadditive cuts — is there a connection? YES!
One relationship via “intersection cuts” viewpoint of the lattice-free convex cuts for
the set, {x ∈ Zm, z ∈ Zn1

+ , y ∈ Rn2
+ , | x = b+Az +Gy}. Cuts in (y , z)-space (Sketch):

x support function of
“polar” of (T - v)

A lattice-free convex set T around fractional point v

From lattice-free convex set to f̄ : [Johnson (1974)], [D., Wolsey (2010)], [Basu,
Cornuéjols, Zambelli (2011)], [Conforti et al. (2015)]
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Any connection between maximal lattice-free convex cuts
and subadditive cuts?

▶ We can obtain the convex hull using maximal lattice-free convex cuts and also

subadditive cuts — is there a connection? YES!
One relationship via “intersection cuts” viewpoint of the lattice-free convex cuts for
the set, {x ∈ Zm, z ∈ Zn1

+ , y ∈ Rn2
+ , | x = b+Az +Gy}. Cuts in (y , z)-space (Sketch):

f̄ Subadditive and sublinear function

x support function of
“polar” of (T - v)

A lattice-free convex set T around fractional point v

From lattice-free convex set to f̄ : [Johnson (1974)], [D., Wolsey (2010)], [Basu,
Cornuéjols, Zambelli (2011)], [Conforti et al. (2015)]
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Any connection between maximal lattice-free convex cuts
and subadditive cuts?

▶ We can obtain the convex hull using maximal lattice-free convex cuts and also

subadditive cuts — is there a connection? YES!
One relationship via “intersection cuts” viewpoint of the lattice-free convex cuts for
the set, {x ∈ Zm, z ∈ Zn1

+ , y ∈ Rn2
+ , | x = b+Az +Gy}. Cuts in (y , z)-space (Sketch):

x Monoidal strengthening (Trivial lifting)
and general lifting

(Not necessarily unique)

f̄ Subadditive and sublinear function

x support function of
“polar” of (T - v)
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A more concrete example of equivalence

▶ P := {x ∈ Rn |Ax = b, x ≥ 0} and S := P ∩ {x | xj ∈ Z ∀i ∈ I}.

Theorem ([Cornuéjols, Li (2002)])
Let:

▶ Split disjunctive closure:
⋂

π∈Zn,π0∈Z P
π,π0 = intersection of all split

cuts for all possible split disjunctions .

▶ Gomory mixed integer cut closure: For any λ ∈ Rm, generate GMI
cut for {x ∈ Rn

+ |λ⊤Ax = λ⊤b, xj ∈ Z ∀i ∈ I} and take the
intersection of all these inequalities.

Then:

Split disjunctive closure = Gomory mixed integer cut closure.
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Section 4

Algebraic ideas
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Reformulation-Linearization Technique

[Sherali Adams (1990)]
(Closely related to Lift-and-project) [Balas, Ceria, Cornuéjols (1993)]

Consider the binary:

n∑
j=1

aijxj ≤ bi ∀i ∈ [m]

xj ∈ {0, 1} ∀j ∈ [n1]
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Reformulation-Linearization Technique

[Sherali Adams (1990)]
(Closely related to Lift-and-project) [Balas, Ceria, Cornuéjols (1993)]

Lets re-write binary MILPs as:

n∑
j=1

aijxj ≤ bi ∀i ∈ [m]

x2j = xj ∀j ∈ [n1]
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Reformulation-Linearization Technique

[Sherali Adams (1990)]
(Closely related to Lift-and-project) [Balas, Ceria, Cornuéjols (1993)]

For convenience lets write as:

bi −
n∑

j=1

aijxj ≥ 0 ∀i ∈ [m]

xj ≥ 0 ∀j ∈ [n1]

1− xj ≥ 0 ∀j ∈ [n1]

x2j = xj ∀j ∈ [n1]
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(‘Standard’ RL Technique) Step 1: reformulation

Multiply linear constraints:

bi −
n∑

j=1

aijxj ≥ 0 ∀i ∈ [m]

xj ≥ 0 ∀j ∈ [n1]

1− xj ≥ 0 ∀j ∈ [n1]

x2j = xj ∀j ∈ [n1]
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(‘Standard’ RL Technique) Step 1: reformulation

Multiply linear constraints:

xk ·

bi −
n∑

j=1

aijxj

 ≥ 0 ∀i ∈ [m],∀k ∈ [n1]

(1− xk) ·

bi −
n∑

j=1

aijxj

 ≥ 0 ∀i ∈ [m],∀k ∈ [n1]

xk · xj ≥ 0 ∀j ∈ [n1],∀k ∈ [n1]

(1− xk) · xj ≥ 0 ∀j ∈ [n1],∀k ∈ [n1]

xk · (1− xj) ≥ 0 ∀j ∈ [n1],∀k ∈ [n1]

(1− xk) · (1− xj) ≥ 0 ∀j ∈ [n1],∀k ∈ [n1]

x2j = xj ∀j ∈ [n1]
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(‘Standard’ RL Technique) Step 1: linearization

▶ Replace xj · xk by a new variables, say wjk

xk ·

(
bi −

n∑
j=1

aijxj

)
≥ 0 ∀i ∈ [m], ∀k ∈ [n1]

(1− xk) ·

(
bi −

n∑
j=1

aijxj

)
≥ 0 ∀i ∈ [m], ∀k ∈ [n1]

xk · xj ≥ 0 ∀j ∈ [n1], ∀k ∈ [n1]

(1− xk) · xj ≥ 0 ∀j ∈ [n1], ∀k ∈ [n1]

xk · (1− xj) ≥ 0 ∀j ∈ [n1], ∀k ∈ [n1]

(1− xk) · (1− xj) ≥ 0 ∀j ∈ [n1], ∀k ∈ [n1]

x2
j = xj ∀j ∈ [n1]
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(‘Standard’ RL Technique) Step 1: linearization

▶ Replace xj · xk by a new variables, say wjk(
bixk −

∑n
j=1 aijwjk

)
≥ 0 ∀i ∈ [m], ∀k ∈ [n1](

bi −
∑n

j=1 aijxj
)
−
(
bixk −

∑n
j=1 aijwjk

)
≥ 0 ∀i ∈ [m], ∀k ∈ [n1]

wjk ≥ 0 ∀j ∈ [n1], ∀k ∈ [n1]
xj − wjk ≥ 0 ∀j ∈ [n1], ∀k ∈ [n1]
xk − wjk ≥ 0 ∀j ∈ [n1], ∀k ∈ [n1]

1− xk − xj + wjk ≥ 0 ∀j ∈ [n1], ∀k ∈ [n1]
wjj = xj ∀j ∈ [n1]


RLT1(P)
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Whats the point?
[Sherali Adams (1990)]

▶ Let P := {x ∈ [0, 1]n1 × Rn2 |Ax ≤ b}.

▶ Remember Pe j ,0 = conv {(P ∩ {x | xj ≤ 0}) ∪ (P ∩ {x | xj ≥ 1})} .

Theorem ([Balas, Ceria, Cornuéjols (1993)])
Let P, RLT1(P), and Pe j ,0 be as defined above. Then:

projx(RLT1(P)) =
⋂
j=1

Pe j ,0.

▶ The power of RLT comes from the multiplication of inequalities!

▶ The process of multiplying and linearization applied only to xj ≥ 0
and 1− xj ≥ 0, then we obtain the McCormick inequalities.

▶ This technique generalizes to polynomial optimization.

▶ This process can be strengthened by adding implied semi-definite
constraints.
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Semidefinite programming relaxation + RLT

(
bixk −

∑n
j=1 aijwij

)
≥ 0 ∀i ∈ [m],∀k ∈ [n1](

bi −
∑n

j=1 aijxj
)
−
(
bixk −

∑n
j=1 aijwij

)
≥ 0 ∀i ∈ [m],∀k ∈ [n1]

wjk ≥ 0 ∀j ∈ [n1],∀k ∈ [n1]
xj − wjk ≥ 0 ∀j ∈ [n1],∀k ∈ [n1]
xk − wjk ≥ 0 ∀j ∈ [n1],∀k ∈ [n1]

1− xk − xj + wjk ≥ 0 ∀j ∈ [n1],∀k ∈ [n1]
wjj = xj ∀j ∈ [n1]

1 x1 x2 . . . xn
x1 w11 w12 . . . w1n

x2 w21 w22 . . . w2n

. . . . . . . . . . . . . . .
xn wn1 wn2 . . . wnn

 ⪰ 0.
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Section 5

Relaxation based cuts
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The main idea

▶ We would like generate cuts valid for P ∩Zn, which is challenging in
general.

▶ we consider a relaxation of P, says Q that is we find valid
inequalities for

Q ∩ Zn,

where Q ⊇ P.

P
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The main idea

▶ We would like generate cuts valid for P ∩Zn, which is challenging in
general.

▶ we consider a relaxation of P, says Q that is we find valid
inequalities for

Q ∩ Zn,

where Q ⊇ P.

P
	

P
	

Q

Valid for Q	∩ #!
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Some classic examples

▶ Knapsack polytope. x ∈ {0, 1}n
∣∣∣∣∣∣

n∑
j=1

ajxj ≤ b

 .

Cover inequalities and other inequalities [Wolsey (1975)], [Balas (1975)],
[Hammer, Johnson,Peled (1975)], Weismantel (1997), lifted cover inequalities
[Zemel (1978)], [Balas, Zemel (1984)], [Crowder, Johnson, Padberg (1983)],
Mixed binary: [Van Roy, Wolsey (1986)], [Gu, Nemhauser, Savelsberg (2000)],
[Richard, de Farias Jr, Nemhauser (2003ab)] General Integer and continuous
variables Knapsack constraint: [Atamtürk (2003)],[Atamtürk (2004)]

▶ Mixing set.

▶ Fixed charge network flow.

▶ Clique.

▶ Boolean quadric polytope. Connection to cuts for QCQPs.[Burer, Letchford
(2009)]
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Some classic examples

▶ Knapsack polytope.

▶ Mixing set.
{(x , y) ∈ {0, 1}n × R+ | xi + y ≥ bi ∀i ∈ [n]} .

[Günlük, Pochet (2001)] Special case when n = 1: Mixed integer rounding
(MIR) inequalities.(≡ Gomory mixed integer cut in closure.) [Nemhauser,
Wolsey (1990)], [Dash, Günlük, Lodi (2010)], Extensions: [Marchand, Wolsey
(1999)], [Van Vyve (2005)], [Atamtürk, Günlük (2010)], [D., Wolsey (2010)],
Chance-constrained programming: [Luedtke, Ahmed, Nemhauser (2010)],
[Küçükyavuz 92012)], [Kılınç-Karzan, Küçükyavuz, Lee (2022)]

▶ Fixed charge network flow.

▶ Clique.

▶ Boolean quadric polytope. Connection to cuts for QCQPs.[Burer, Letchford
(2009)]
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Some classic examples

▶ Knapsack polytope.

▶ Mixing set.

▶ Fixed charge network flow. Submodularity: [Wolsey (1989)], [Atamtürk, S.
Küçükyavuz, and B. Tezel (2017)], Flow cover: [Padberg, Van Roy, Wolsey
(1985)], [Gu, Nemhauser, Savelsberg (2000)], Network design: [Atamtürk,
Günlük (2007)]

Flow cover:

{
(x , y) ∈ {0, 1}n × Rn

+

∣∣∣∣∣
n∑

i=1

yi ≤ b, yi ≤ aixi ∀i ∈ [n]

}
.

▶ Clique.

▶ Boolean quadric polytope. Connection to cuts for QCQPs.[Burer, Letchford
(2009)]
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Some classic examples

▶ Knapsack polytope.

▶ Mixing set.

▶ Fixed charge network flow.

▶ Clique. [Johnson, Padberg (1982)], [Atamtürk, Nemhauser, Savelsberg (2000)]

{
x ∈ {0, 1}n | xi + xj ≤ 1 ∀i , j ∈ [n]× [n], i ̸= j

}
.

▶ Boolean quadric polytope. Connection to cuts for QCQPs.[Burer, Letchford
(2009)]
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Some classic examples

▶ Knapsack polytope.

▶ Mixing set.

▶ Fixed charge network flow.

▶ Clique.

▶ Boolean quadric polytope. [Padberg (1989)], [Boros, Hammer (1993)], [De
Simone (1996)] Cut polytope: [Barahona, Mahjoub (1986)], [Sherali, Lee,
Adams (1995)] Review: [Letchford (2022)]{

(x ,w) ∈ {0, 1}n × {0, 1}
(n)(n−1)

2
∣∣wij = xixj ∀i , j ∈ [n]× [n], i ̸= j

}
.

Connection to cuts for QCQPs.[Burer, Letchford (2009)]
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Section 6

Measuring strength of cuts
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Measuring strength of cuts - I

▶ Does it produce a finite algorithm?
Pure integer: [Gomory (1958)], [Conforti, De Santis, Di Summa,
Rinaldi (2021)] Mixed integer: [Dash et al. (2013)], Matching:
[Chandrasekaran, Végh, Vempala (2016)]

▶ Does it produce the convex hull?
Matching polytope using Chvátal-Gomory: [Edmonds (1965)]

▶ Approximation to the convex hull?
Huge literature in CS theory.

▶ Are they facet-defining for the relaxation?
Group relaxation: [Gomory, Johnson (1972ab)], [Johnson (1974)],
[Gomory, Johnson (2003)], [D., Richard, Miller (2010)], [Basu,
Hildebrand, Molinaro (2018)], [Basu, Conforti, Cornuéjols, Zambelli
(2010)], [Cornuéjols and Molinaro (2024)], [Basu, R. Hildebrand,
Köppe (2014abcd)] [Basu, Hildebrand, Köppe, Molinaro (2013)],
[Köppe, Zhou (2017)], [Di Summa (2020)]
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Matching polytope using Chvátal-Gomory: [Edmonds (1965)]

▶ Approximation to the convex hull?
Huge literature in CS theory.

▶ Are they facet-defining for the relaxation?
Group relaxation: [Gomory, Johnson (1972ab)], [Johnson (1974)],
[Gomory, Johnson (2003)], [D., Richard, Miller (2010)], [Basu,
Hildebrand, Molinaro (2018)], [Basu, Conforti, Cornuéjols, Zambelli
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Measuring strength of cuts - II
Rank of a cut-plane procedure:

▶ Closure of cutting plane: Add all cuts that can be generated by the
cutting-plane procedure.

▶ Closure may not be the convex hull.

▶ So we may obtain the closure of the closure, this is the second closure.

▶ If r is the smallest integer such that the rth closure is the convex hull, we
say the rank is r .

Theorem (Pure integer program)
Let P be an arbitrary rational polyhedron. Then for Chvátal-Gomory cuts, we
have the following:

▶ The rank is finite. [Schrijver (1980)]

▶ If P ⊆ [0, 1]n, then the rank is bounded by O(n2logn). [Eisenbrand,
Schulz (2003)]

▶ There exists a binary knapsack polytope whose rank is at least Ω(n2).
[Rothvoß, Sanitá (2017)]

Theorem
Let P ⊆ [0, 1]n be an arbitrary rational polyhedron. Then the rank of the RLT
procedure is at most n.

Huge literature on ranks of cutting-planes.
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have the following:
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How do solvers select cuts to use?

▶ Maximize depth of cut: α⊤x∗−β
∥α∥2

▶ Cuts separating multiple known fractional point/point in relative interior
or even interior.

▶ Parallelism between cuts/objective function.

▶ Sparsity.

▶ Facet-defining or not?
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How do solvers select cuts to use?

But, here is a list of things that might matter:

▶ Maximize depth of cut: α⊤x∗−β
∥α∥2

Not always the best [Andreello, Caprara, Fischetti (2007)], [Amaldi,
Coniglio, Gualandi (2014)].

▶ Consider a point x∗ that can be separated
by the inequality: α⊤x ≤ β, for a packing
problem.

▶ Suppose α1 > 0 and x∗1 = 0.

▶ Then setting α1 = 0 is a valid inequality
(packing problem) and improves the depth
of cut: However this cut is dominated by
the original inequality!

[Shah, D. , Molinaro
(2024)]

(a) �T versus �G when an indi-
vidual cut is added.

(b) �T versus �d when an indi-
vidual cut is added.

(c) �T versus �G when all cuts
are added.

Figure 4: Impact of adding cover cuts on the size of FSB-P trees for MKP instances.

Fig. 4c suggests that if the gap closed is small (also happens when just one cut is added), it is
difficult to predict the direction of change in tree size. However, after enough gap is closed, there is
a clear decreasing trend, and we may expect the size of the FSB-P tree to have reduced. With this
hypothesis in mind, we conduct the next set of experiments, where we study the change in tree size
as more rounds of cuts are added.

3.2 Experiments on MIPLIB

The experiments in Section 3.1 allowed us to completely control all sources of variability in tree size,
ensuring that any increase in tree size is an example of non-monotonicity. However, a shortcoming
of these experiments is that these instances do not represent the diversity of problems encountered
in practice. With this in mind, we next consider instances from the Benchmark Set of MIPLIB 2017
[20] and cuts applied by solvers in practice.

The goal of these experiments is to understand the effects of cutting planes on FSB-P tree sizes,
and how that may vary as more gap is closed. In particular, the number of rounds of cuts applied
at the root node is varied. After each additional round of cuts, the FSB-P tree size is computed.
The underlying hypothesis is that if enough gap is closed, the size of trees must decrease as the
increased effectiveness of pruning by bounds outweighs possibly worse branching decisions. While
these experiments may be more relevant practically, we can no longer control dual degeneracy or
variation in tree size due to it. We therefore run every instance with 3 different seeds.

The experiments in this section are conducted using SCIP 8.0 [9] as the MIP solver and
PySCIPOpt [27] as the API. All computations were done on a Linux based cluster. Whenever
SCIP is called, presolve and propagation are disabled, cuts are allowed only at the root node,
and branching variable is selected by the vanilla full strong branching rule while disabling strong
branching side-effects. For every instance, the ordering of variables remains the same for a fixed
seed. Moreover, independence of the branch-and-bound trees from node selection rules is ensured
by providing the optimal MIP value to the solver. In the absence of dual degeneracy, configuring
SCIP to these settings eliminates all sources of performance variability in the number of nodes to
the best of our understanding, and enables us to isolate the impact of any change in branching
decisions.
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▶ Cuts separating multiple known fractional point/point in relative interior
or even interior.

▶ Parallelism between cuts/objective function.

▶ Sparsity.

▶ Facet-defining or not?
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increased effectiveness of pruning by bounds outweighs possibly worse branching decisions. While
these experiments may be more relevant practically, we can no longer control dual degeneracy or
variation in tree size due to it. We therefore run every instance with 3 different seeds.

The experiments in this section are conducted using SCIP 8.0 [9] as the MIP solver and
PySCIPOpt [27] as the API. All computations were done on a Linux based cluster. Whenever
SCIP is called, presolve and propagation are disabled, cuts are allowed only at the root node,
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by providing the optimal MIP value to the solver. In the absence of dual degeneracy, configuring
SCIP to these settings eliminates all sources of performance variability in the number of nodes to
the best of our understanding, and enables us to isolate the impact of any change in branching
decisions.
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Variants of depth of cut: [Wesselmann, Suhl (2007)], Volume: [Basu,
Conforti, Di Summa, Zambelli (2019)], [Zhou (2023)]

▶ Cuts separating multiple known fractional point/point in relative interior
or even interior.

▶ Parallelism between cuts/objective function.

▶ Sparsity.

▶ Facet-defining or not?
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How do solvers select cuts to use?

But, here is a list of things that might matter:

▶ Maximize depth of cut: α⊤x∗−β
∥α∥2

▶ Cuts separating multiple known fractional point/point in relative interior
or even interior. [Fischetti, Salvagnin (2009)], [Turner, Berthold,
Besançon, Koch (2023)]

▶ Parallelism between cuts/objective function.

▶ Sparsity.

▶ Facet-defining or not?
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How do solvers select cuts to use?

But, here is a list of things that might matter:

▶ Maximize depth of cut: α⊤x∗−β
∥α∥2

▶ Cuts separating multiple known fractional point/point in relative interior
or even interior.

▶ Parallelism between cuts/objective function.

▶ Sparsity. [Amaldi, Coniglio, Gualandi (2014)], [D., Molinaro, Wang
(2015)], [D., Molinaro, Wang (2018)]

▶ Facet-defining or not?
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How do solvers select cuts to use?

But, here is a list of things that might matter:

▶ Maximize depth of cut: α⊤x∗−β
∥α∥2

▶ Cuts separating multiple known fractional point/point in relative interior
or even interior.

▶ Parallelism between cuts/objective function.

▶ Sparsity.

▶ Facet-defining or not?
Closely related to normalization for cut-generating LP. [Conforti, Wolsey
(2019)]
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How many cuts to add?

▶ [Balas, Ceria, Cornuéjols, Natraj (1996)]

▶ [Shah, D., Molinaro (2024)]

• For instances enlight_hard and seymour1, where a moderate gap was closed (�G between
20% and 50%) the tree size had a generally decreasing trend with some intermittent rises.

• In most instances, the total gap closed was small (�G at most 20%). These instances did
not have a decreasing trend. Instances from mas, gen-ip and neos, istanbul-no-cutoff and
ran14x18-disj-8 often had large spikes and drops with every round of cut. The largest jump
in tree size was seen in the case of supportcase26 where, for all of the 3 seeds, the tree size
increased by more than 20 times within a single round. On the other hand, rmatr100-p10 and
glass-sc showed no change in tree size in spite of closing some gap.

• Finally, in the case of fastxgemm-n2r6s0t2, pk1, markshare_4_0 and mad, the gap closed is
0 even after 10 rounds of cuts, but the tree sizes changed significantly in both directions. It
must be noted that these instances clearly have high dual degeneracy which also contributes
to variability in size.

An inference that can be drawn is that if the gap closed is small, change in tree size is difficult
to predict, and often increases, possibly due to non-monotonicity. However, when a large enough
gap is closed, a significant decrease in tree size may be expected. This is seen clearly in Fig. 6 where
there are no data points with an increase in tree size when the gap closed exceeds 20%. Note that
a very similar pattern is also seen in Fig. 4c for the randomly generated MKP instances.

Figure 6: Change in tree size and the gap closed across all instances, seeds and limits on rounds of
cuts.

4 Conclusion

The branch-and-cut method is the most efficient framework for solving general MIPs in practice.
The objective of this paper is not to claim otherwise, but to highlight some of the fundamental
challenges in this approach. Sometimes in practice, it is experienced that adding cuts increases
the number of nodes. Through this work, we show that such aberrant behaviour may not always
be because of engineering reasons like the addition of cuts leading to a change in some default
parameters or other random tie-breaking, but the problem may in fact be mathematical in nature.
In particular, as shown in Section 2, standard branching rules may sometimes produce larger trees
when provided with a tighter relaxation and are in general not monotonic. In Section 3, we show
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▶ [Shah, D., Molinaro (2024)]

• For instances enlight_hard and seymour1, where a moderate gap was closed (�G between
20% and 50%) the tree size had a generally decreasing trend with some intermittent rises.

• In most instances, the total gap closed was small (�G at most 20%). These instances did
not have a decreasing trend. Instances from mas, gen-ip and neos, istanbul-no-cutoff and
ran14x18-disj-8 often had large spikes and drops with every round of cut. The largest jump
in tree size was seen in the case of supportcase26 where, for all of the 3 seeds, the tree size
increased by more than 20 times within a single round. On the other hand, rmatr100-p10 and
glass-sc showed no change in tree size in spite of closing some gap.

• Finally, in the case of fastxgemm-n2r6s0t2, pk1, markshare_4_0 and mad, the gap closed is
0 even after 10 rounds of cuts, but the tree sizes changed significantly in both directions. It
must be noted that these instances clearly have high dual degeneracy which also contributes
to variability in size.

An inference that can be drawn is that if the gap closed is small, change in tree size is difficult
to predict, and often increases, possibly due to non-monotonicity. However, when a large enough
gap is closed, a significant decrease in tree size may be expected. This is seen clearly in Fig. 6 where
there are no data points with an increase in tree size when the gap closed exceeds 20%. Note that
a very similar pattern is also seen in Fig. 4c for the randomly generated MKP instances.

Figure 6: Change in tree size and the gap closed across all instances, seeds and limits on rounds of
cuts.

4 Conclusion

The branch-and-cut method is the most efficient framework for solving general MIPs in practice.
The objective of this paper is not to claim otherwise, but to highlight some of the fundamental
challenges in this approach. Sometimes in practice, it is experienced that adding cuts increases
the number of nodes. Through this work, we show that such aberrant behaviour may not always
be because of engineering reasons like the addition of cuts leading to a change in some default
parameters or other random tie-breaking, but the problem may in fact be mathematical in nature.
In particular, as shown in Section 2, standard branching rules may sometimes produce larger trees
when provided with a tighter relaxation and are in general not monotonic. In Section 3, we show

12

140



Some review papers

▶ Theoretical challenges towards cutting-plane selection. D., Molinaro
(2018).

▶ Light on the infinite group relaxation. Basu, Hildebrand, Koëppe
(2016).

▶ Lifting techniques for mixed integer programming, Richard (2011).

▶ The group-theoretic approach in mixed integer programming. D.,
Richard (2010).

▶ Cutting planes in integer and mixed integer programming.
Marchand, Martin, Weismantel, Wolsey (2002).

▶ Progress in linear programming-based algorithms for integer
programming: an exposition. Johnson, Nemhauser, Savelsbergh
(2000).
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