Introduction to cutting planes for mixed integer linear (nonlinear) programs

Santanu S. Dey

June 2024

Section 1

Introduction

Cuts: obtaining better dual bounds

```
Mixed integer linear program
    z}\mp@subsup{}{}{OPT}:= max c c 'x
    s.t. Ax <b (convex constraints)
        x\in\mp@subsup{\mathbb{Z}}{}{\mp@subsup{n}{1}{}}\times\mp@subsup{\mathbb{R}}{}{\mp@subsup{n}{2}{}}. (non-convex constraints)
```


Cuts: obtaining better dual bounds

Mixed integer linear program
$z^{O P T}:=\max c^{\top} x$
$\begin{array}{lll}\text { s.t. } & A x \leq b & \text { (convex constraints) } \\ & x \in \mathbb{Z}^{n_{1}} \times \mathbb{R}^{n_{2}} . & \text { (non-convex constraints) }\end{array}$

1. Feasible solution $\hat{x}:\left(c^{\top} \hat{x}\right)$ provides a lower bound on $z^{O P T}$.

Cuts: obtaining better dual bounds

Mixed integer linear program

$$
\begin{array}{rlll}
z^{O P T}:= & \max & c^{\top} x & \\
\text { s.t. } & A x \leq b & & \text { (convex constraints) } \\
& x \in \mathbb{Z}^{n_{1}} \times \mathbb{R}^{n_{2}} . & \text { (non-convex constraints) }
\end{array}
$$

1. Feasible solution $\hat{x}:\left(c^{\top} \hat{x}\right)$ provides a lower bound on $z^{\text {OPT }}$.
2. Solving convex (LP) relaxation gives (standard) dual (upper) bound ($z^{\text {LP }}$).

$$
\begin{array}{rll}
z^{\mathrm{LP}}:= & \max & c^{\top} x \\
\text { s.t. } & A x \leq b \\
& x \in \mathbb{R}^{n_{1}} \times \mathbb{R}^{n_{2}} . & \text { (non-convex constraints) } \\
& \text { (convex }
\end{array}
$$

$$
z^{\mathrm{LP}} \geq z^{\mathrm{OPT}} \geq c^{\top} \hat{x}
$$

Cuts: obtaining better dual bounds

Mixed integer linear program

$$
\begin{array}{rlll}
z^{O P T}:= & \max & c^{\top} x & \\
\text { s.t. } & A x \leq b & & \text { (convex constraints) } \\
& x \in \mathbb{Z}^{n_{1}} \times \mathbb{R}^{n_{2}} . & \text { (non-convex constraints) }
\end{array}
$$

1. Feasible solution $\hat{x}:\left(c^{\top} \hat{x}\right)$ provides a lower bound on $z^{\text {OPT }}$.
2. Solving convex (LP) relaxation gives (standard) dual (upper) bound (z^{LP}).
3. Perfect dual bound ($z^{\text {OPT }}$) comes from solving convex hull of feasible region.

$$
\begin{array}{rll}
z^{\mathrm{OPT}}= & \max & c^{\top} x \\
& \text { s.t. } & x \in \operatorname{conv}\left(\left\{x \in \mathbb{Z}^{n_{1}} \times \mathbb{R}^{n_{2}} \mid A x \leq b\right\}\right) \quad \text { (convex hull) }
\end{array}
$$

Cuts: obtaining better dual bounds

Mixed integer linear program

$$
\begin{array}{rlll}
z^{O P T}:= & \max & c^{\top} x & \\
\text { s.t. } & A x \leq b & & \text { (convex constraints) } \\
& x \in \mathbb{Z}^{n_{1}} \times \mathbb{R}^{n_{2}} . & \text { (non-convex constraints) }
\end{array}
$$

1. Feasible solution $\hat{x}:\left(c^{\top} \hat{x}\right)$ provides a lower bound on $z^{\text {OPT }}$.
2. Solving convex (LP) relaxation gives (standard) dual (upper) bound ($z^{\text {LP }}$).
3. Perfect dual bound ($\left.z^{\text {OPT }}\right)$ comes from solving convex hull of feasible region.
4. Improving LP dual bound by adding cutting-planes.

$$
\begin{aligned}
z^{\mathrm{LP}+\mathrm{CUTS}}:= & \max \\
& c^{\top} x \\
& \text { s.t. } \\
& A x \leq b \quad \text { (convex constraints) } \\
& \tilde{A} x \leq \tilde{b} \quad \text { (valid for convex hull - Cuts) }
\end{aligned}
$$

Cuts: obtaining better dual bounds

Mixed integer linear program
$z^{O P T}:=\max c^{\top} x$

$$
\begin{array}{lll}
\text { s.t. } & A x \leq b & \text { (convex constraints) } \\
& x \in \mathbb{Z}^{n_{1}} \times \mathbb{R}^{n_{2}} . & \text { (non-convex constraints) }
\end{array}
$$

1. Feasible solution $\hat{x}:\left(c^{\top} \hat{x}\right)$ provides a lower bound on $z^{\text {OPT }}$.
2. Solving convex (LP) relaxation gives (standard) dual (upper) bound ($z^{\text {LP }}$).
3. Perfect dual bound ($z^{\text {OPT }}$) comes from solving convex hull of feasible region.
4. Improving LP dual bound by adding cutting-planes.

$$
z^{\mathrm{LP}} \geq z^{\mathrm{LP}+\mathrm{CUTS}} \geq z^{\mathrm{OPT}} \geq c^{\top} \hat{x}
$$

An integer program: feasible region

An integer program: objective function

An integer program: optimal solution

An integer program: dual bound from LP relaxation

An integer program: perfect dual bound from convex hull

An integer program: improved dual bound using cutting-plane(s)

Why linear inequalities is a reasonable choice:
Fundamental theorem of integer programming
Theorem ([Meyer (1974)])
Let $S:=\left\{x \in \mathbb{Z}^{n_{1}} \times \mathbb{R}^{n_{2}} \mid A x \leq b\right\}$. If A and b is rational, then $\operatorname{conv}(S)$ is a rational polyhedron.

Why linear inequalities is a reasonable choice:
Fundamental theorem of integer programming
Theorem ([Meyer (1974)])
Let $S:=\left\{x \in \mathbb{Z}^{n_{1}} \times \mathbb{R}^{n_{2}} \mid A x \leq b\right\}$. If A and b is rational, then $\operatorname{conv}(S)$ is a rational polyhedron.

- Also adding linear cutting-plane, means we need to only solve modified LPs with dual simplex.
- Generalization of the above result for integer points in general convex set: [D., Morán (2013)]

How to generate cutting-planes?

- Geometric ideas: Split Disjunctive cuts, Chvátal-Gomory Cuts, maximal lattice-free cuts.
- Subadditive inequalities: Gomory mixed integer cut.
- Cuts using algebraic properties: Extended formulations.
- Cut from structured relaxations: Boolean quadric polytope, Clique cuts, Mixed integer rounding inequalities, Lifted cover, Flow cover, Mixing inequalities,
- Lifting: A technique to generate, rotate and strengthen inequalities. (Not covering this technique here)

Section 2

Geometric Ideas

2.1

Split disjunctive cuts

Split disjunctive cuts

[Balas (1979)][Cook, Kannan, Schrijver (1990)]

- Let $P \subseteq \mathbb{R}^{n}$ be a set and we are interested in obtaining valid inequality for $P \cap \mathbb{Z}^{n}$.

Split disjunctive cuts

[Balas (1979)][Cook, Kannan, Schrijver (1990)]

- Let $P \subseteq \mathbb{R}^{n}$ be a set and we are interested in obtaining valid inequality for $P \cap \mathbb{Z}^{n}$.
- Let $\pi \in \mathbb{Z}^{n}$ and $\pi_{0} \in \mathbb{Z}$.
- Since

$$
\mathbb{Z}^{n} \cap \underbrace{\left\{x \in \mathbb{R}^{n} \mid \pi_{0}<\pi^{\top} x<\pi_{0}+1\right\}}_{\text {Split disjunctive set }}=\emptyset
$$

Split disjunctive cuts

[Balas (1979)][Cook, Kannan, Schrijver (1990)]

- Let $P \subseteq \mathbb{R}^{n}$ be a set and we are interested in obtaining valid inequality for $P \cap \mathbb{Z}^{n}$.
- Let $\pi \in \mathbb{Z}^{n}$ and $\pi_{0} \in \mathbb{Z}$.
- Since

- If $\alpha^{\top} x \leq \beta$ is valid for:
- $P \cap\left\{x \in \mathbb{R}^{n} \mid \pi^{\top} x \leq \pi_{0}\right\}$, and
- $P \cap\left\{x \in \mathbb{R}^{n} \mid \pi^{\top} x \geq \pi_{0}+1\right\}$, then

is valid inequality for
$P^{\pi, \pi_{0}}:=\operatorname{conv}\left(\left(P \cap\left\{x \in \mathbb{R}^{n} \mid \pi_{0} \geq \pi^{\top} x\right\}\right) \cup\left(P \cap\left\{x \in \mathbb{R}^{n} \mid \pi^{\top} x \geq \pi_{0}+1\right\}\right)\right.$
and therefore also for: $P \cap \mathbb{Z}^{n}$.

Split disjunctive cuts

[Balas (1979)][Cook, Kannan, Schrijver (1990)]

- Let $P \subseteq \mathbb{R}^{n}$ be a set and we are interested in obtaining valid inequality for $P \cap \mathbb{Z}^{n}$.
- Let $\pi \in \mathbb{Z}^{n}$ and $\pi_{0} \in \mathbb{Z}$.
- Since

$$
\mathbb{Z}^{n} \cap \underbrace{\left\{x \in \mathbb{R}^{n} \mid \pi_{0}<\pi^{\top} x<\pi_{0}+1\right\}}_{\text {Split disjunctive set }}=\emptyset .
$$

- If $\alpha^{\top} x \leq \beta$ is valid for:
- $P \cap\left\{x \in \mathbb{R}^{n} \mid \pi^{\top} x \leq \pi_{0}\right\}$, and
- $P \cap\left\{x \in \mathbb{R}^{n} \mid \pi^{\top} x \geq \pi_{0}+1\right\}$, then

$$
\alpha^{\top} x \leq \beta
$$

is valid inequality for $P^{\pi, \pi_{0}}:=\operatorname{conv}\left(\left(P \cap\left\{x \in \mathbb{R}^{n} \mid \pi_{0} \geq \pi^{\top} x\right\}\right) \cup\left(P \cap\left\{x \in \mathbb{R}^{n} \mid \pi^{\top} x \geq \pi_{0}+1\right\}\right)\right.$ and therefore also for: $P \cap \mathbb{Z}^{n}$.

Split disjunctive cuts

[Balas (1979)][Cook, Kannan, Schrijver (1990)]

- Let $P \subseteq \mathbb{R}^{n}$ be a set and we are interested in obtaining valid inequality for $P \cap \mathbb{Z}^{n}$.
- Let $\pi \in \mathbb{Z}^{n}$ and $\pi_{0} \in \mathbb{Z}$.
- Since

$$
\mathbb{Z}^{n} \cap \underbrace{\left\{x \in \mathbb{R}^{n} \mid \pi_{0}<\pi^{\top} x<\pi_{0}+1\right\}}_{\text {Split disjunctive set }}=\emptyset .
$$

- If $\alpha^{\top} x \leq \beta$ is valid for:
- $P \cap\left\{x \in \mathbb{R}^{n} \mid \pi^{\top} x \leq \pi_{0}\right\}$, and
- $P \cap\left\{x \in \mathbb{R}^{n} \mid \pi^{\top} x \geq \pi_{0}+1\right\}$, then

$$
\alpha^{\top} x \leq \beta
$$

is valid inequality for $P^{\pi, \pi_{0}}:=\operatorname{conv}\left(\left(P \cap\left\{x \in \mathbb{R}^{n} \mid \pi_{0} \geq \pi^{\top} x\right\}\right) \cup\left(P \cap\left\{x \in \mathbb{R}^{n} \mid \pi^{\top} x \geq \pi_{0}+1\right\}\right)\right.$ and therefore also for: $P \cap \mathbb{Z}^{n}$.

Special-case: Chvátal-Gomory Cuts

[Gomory (1958)]

- If (WLOG) $P \cap\left\{x \in \mathbb{R}^{n} \mid \pi^{\top} x \geq \pi_{0}+1\right\}=\emptyset$, then $\pi^{\top} x \leq \pi_{0}$ is a valid inequality for $P \cap \mathbb{Z}^{n}$.

Follow-up work: [Schrijver (1980)], [Dadush, D., Vielma (2014)], [Cornuéjols, Lee (2018)]

Special-case: Chvátal-Gomory Cuts

[Gomory (1958)]

- If (WLOG) $P \cap\left\{x \in \mathbb{R}^{n} \mid \pi^{\top} x \geq \pi_{0}+1\right\}=\emptyset$, then $\pi^{\top} x \leq \pi_{0}$ is a valid inequality for $P \cap \mathbb{Z}^{n}$.

Follow-up work: [Schrijver (1980)], [Dadush, D., Vielma (2014)], [Cornuéjols, Lee (2018)]

Main take aways

- Given a set P, find a set lattice-free set T such that

$$
\operatorname{int}(T) \cap \mathbb{Z}^{n}=\emptyset
$$

Main take aways

- Given a set P, find a set lattice-free set T such that

$$
\operatorname{int}(T) \cap \mathbb{Z}^{n}=\emptyset
$$

(in fact it is enough to satisfy $\left.P \cap \operatorname{int}(T) \cap \mathbb{Z}^{n}=\emptyset\right)$.

Main take aways

- Given a set P, find a set lattice-free set T such that

$$
\operatorname{int}(T) \cap \mathbb{Z}^{n}=\emptyset
$$

(in fact it is enough to satisfy $\left.P \cap \operatorname{int}(T) \cap \mathbb{Z}^{n}=\emptyset\right)$.

- Find an inequality valid

$$
\alpha^{\top} x \leq \beta,
$$

valid for

$$
P \backslash \operatorname{int}(T)
$$

Main take aways

- Given a set P, find a set lattice-free set T such that

$$
\operatorname{int}(T) \cap \mathbb{Z}^{n}=\emptyset
$$

(in fact it is enough to satisfy $\left.P \cap \operatorname{int}(T) \cap \mathbb{Z}^{n}=\emptyset\right)$.

- Find an inequality valid

$$
\alpha^{\top} x \leq \beta,
$$

valid for

$$
P \backslash \operatorname{int}(T)
$$

- What type of lattice-free set T considered?
- non-convex?
- convex?
- polyhedral?

Main take aways

- Given a set P, find a set lattice-free set T such that

$$
\operatorname{int}(T) \cap \mathbb{Z}^{n}=\emptyset
$$

(in fact it is enough to satisfy $\left.P \cap \operatorname{int}(T) \cap \mathbb{Z}^{n}=\emptyset\right)$.

- Find an inequality valid

$$
\alpha^{\top} x \leq \beta
$$

valid for

$$
P \backslash \operatorname{int}(T)
$$

- What type of lattice-free set T considered?
non-convex?
- convex?
- polyhedral?
- How is the valid inequality found?
- Valid inequality for $\operatorname{conv}(P \backslash \operatorname{int}(T))$.
- Closed-form "formula"?
1.2

Generalizations of split disjunctive cuts

Types of lattice-free T sets I: non-convex

- Asymmetric [Dash, D., Günlük (2012)].

- Divides the feasible region into smaller polyhedral sets whose union contains all the integer points.

Types of lattice-free T sets I: non-convex

- Asymmetric [Dash, D., Günlük (2012)].
- Union of split disjunctions [Li, Richard (2008)], [Dash et al. (2013)], [Dash, Günlük, Morán (2013)]

- Divides the feasible region into smaller polyhedral sets whose union contains all the integer points. ${ }_{34}$

Types of lattice-free T sets II: convex

[Lovász (1989)]

- T is a convex set that does not contain integers in its interior: Lattice-free convex set.

Types of lattice-free T sets II: convex

[Lovász (1989)]

- T is a convex set that does not contain integers in its interior: Lattice-free convex set.
- Lattice-free cuts can give the convex hull of the mixed-integer feasible solutions. Picture proof:

Types of lattice-free T sets II: convex

[Lovász (1989)]

- T is a convex set that does not contain integers in its interior: Lattice-free convex set.
- Lattice-free cuts can give the convex hull of the mixed-integer feasible solutions. Picture proof:

Types of lattice-free T sets II: convex

[Lovász (1989)]

- T is a convex set that does not contain integers in its interior: Lattice-free convex set.
- Lattice-free cuts can give the convex hull of the mixed-integer feasible solutions. Picture proof:

Maximal lattice-free convex set

- Clearly larger the lattice-free convex set T, we expect to find better inequality.

Maximal lattice-free convex set

- Clearly larger the lattice-free convex set T, we expect to find better inequality.

Maximal lattice-free convex set

- Clearly larger the lattice-free convex set T, we expect to find better inequality.

Definition (Maximal Lattice-free convex set)
We say $T \subseteq \mathbb{R}^{n}$ is a maximal lattice-free convex set if $T^{\prime} \subseteq \mathbb{R}^{n}$ is a lattice-free convex set and $T^{\prime} \supseteq T$, implies $T^{\prime}=T$.

Maximal lattice-free convex set

- Clearly larger the lattice-free convex set T, we expect to find better inequality.

Definition (Maximal Lattice-free convex set)

We say $T \subseteq \mathbb{R}^{n}$ is a maximal lattice-free convex set if $T^{\prime} \subseteq \mathbb{R}^{n}$ is a lattice-free convex set and $T^{\prime} \supseteq T$, implies $T^{\prime}=T$.

Theorem ([Lovász (1989)], [Basu, Conforti, Cornuéjols, Conforti (2010)])

All maximal lattice-free convex sets are polyhedral. Moreover, a full-dimension lattice-free convex set is maximal iff it is a lattice-free polyhedron with integer point in the relative interior of it facets.

Maximal lattice-free convex set

Generalization of maximal lattice-free sets

Generalization of maximal lattice-free sets

Generalization of maximal lattice-free sets

Generalization of maximal lattice-free sets

Definition (Maximal S-free convex set; [Johnson (1983)], [D., Wolsey (2010)])
Let $S=P \cap \mathbb{Z}^{n}$, where P is a convex set. We say:

- T is a convex S-free set, if $\operatorname{int}(T) \cap S=\emptyset$.
- $T \subseteq \mathbb{R}^{n}$ is a maximal S-free convex set if $T^{\prime} \subseteq \mathbb{R}^{n}$ is a S-free convex set and $T^{\prime} \supseteq T$, implies $T^{\prime}=T$.

Generalization of maximal lattice-free sets

Definition (Maximal S-free convex set; [Johnson (1983)], [D., Wolsey (2010)])
Let $S=P \cap \mathbb{Z}^{n}$, where P is a convex set. We say:

- T is a convex S-free set, if $\operatorname{int}(T) \cap S=\emptyset$.
- $T \subseteq \mathbb{R}^{n}$ is a maximal S-free convex set if $T^{\prime} \subseteq \mathbb{R}^{n}$ is a S-free convex set and $T^{\prime} \supseteq T$, implies $T^{\prime}=T$.

Theorem ([D., Morán (2011)])
All maximal S-free convex sets are polyhedral.

Polyhedrality of maximal lattice-free sets is useful

- Let maximal lattice-free (or S-free) set be $T:=\left\{x \in \mathbb{R}^{n} \mid\left(g^{i}\right)^{\top} x \geq h^{i} \quad i \in[m]\right\}$.

Polyhedrality of maximal lattice-free sets is useful

- Let maximal lattice-free (or S-free) set be $T:=\left\{x \in \mathbb{R}^{n} \mid\left(g^{i}\right)^{\top} x \geq h^{i} \quad i \in[m]\right\}$.
- If $\alpha^{\top} x \leq \beta$ is valid for the disjunction:

$$
\bigvee_{i=1}^{m} P \cap\{x \in \mathbb{R}^{n} \mid \underbrace{\left(g^{i}\right)^{\top} x \leq h^{i}}_{\text {complement of a facet of } T}\},
$$

then $\alpha^{\top} x \leq \beta$ is a valid inequality for $P \cap \mathbb{Z}^{n}$.

Polyhedrality of maximal lattice-free sets is useful

- Let maximal lattice-free (or S-free) set be $T:=\left\{x \in \mathbb{R}^{n} \mid\left(g^{i}\right)^{\top} x \geq h^{i} \quad i \in[m]\right\}$.
- If $\alpha^{\top} x \leq \beta$ is valid for the disjunction:

$$
\bigvee_{i=1}^{m} P \cap\{x \in \mathbb{R}^{n} \mid \underbrace{\left(g^{i}\right)^{\top} x \leq h^{i}}_{\text {complement of a facet of } T}\},
$$

then $\alpha^{\top} x \leq \beta$ is a valid inequality for $P \cap \mathbb{Z}^{n}$.

- One approach to find inequality $\alpha^{\top} x \leq \beta$ to separate x^{*} :

Polyhedrality of maximal lattice-free sets is useful

- Let maximal lattice-free (or S-free) set be $T:=\left\{x \in \mathbb{R}^{n} \mid\left(g^{i}\right)^{\top} x \geq h^{i} \quad i \in[m]\right\}$.
- If $\alpha^{\top} x \leq \beta$ is valid for the disjunction:

$$
\bigvee_{i=1}^{m} P \cap\{x \in \mathbb{R}^{n} \mid \underbrace{\left(g^{i}\right)^{\top} x \leq h^{i}}_{\text {complement of a facet of } T}\},
$$

then $\alpha^{\top} x \leq \beta$ is a valid inequality for $P \cap \mathbb{Z}^{n}$.

- One approach to find inequality $\alpha^{\top} x \leq \beta$ to separate x^{*} :

$$
\begin{array}{cl}
\max _{\alpha, \beta} & \alpha^{\top} x^{*}-\beta \\
\text { s.t. } & \alpha x \leq \beta \text { is valid for }\left(P \cap\left\{x \in \mathbb{R}^{n} \mid\left(g^{i}\right)^{\top} x \leq h^{i}\right\}\right) \forall i \in[m]
\end{array}
$$

Polyhedrality of maximal lattice-free sets is useful

- Let maximal lattice-free (or S-free) set be $T:=\left\{x \in \mathbb{R}^{n} \mid\left(g^{i}\right)^{\top} x \geq h^{i} \quad i \in[m]\right\}$.
- If $\alpha^{\top} x \leq \beta$ is valid for the disjunction:

$$
\bigvee_{i=1}^{m} P \cap\{x \in \mathbb{R}^{n} \mid \underbrace{\left(g^{i}\right)^{\top} x \leq h^{i}}_{\text {complement of a facet of } T}\}
$$

then $\alpha^{\top} x \leq \beta$ is a valid inequality for $P \cap \mathbb{Z}^{n}$.

- One approach to find inequality $\alpha^{\top} x \leq \beta$ to separate x^{*} : Use Farkas Lemma:

$$
\left.\begin{array}{ccc}
\max _{\alpha, \beta, \lambda, \mu} & \alpha^{\top} x^{*}-\beta \\
& \alpha^{\top}=\left(\lambda^{i}\right)^{\top} A+\mu^{i} \cdot\left(g^{i}\right)^{\top} \forall i \in[m] \\
\text { s.t. } & \beta \geq\left(\lambda^{i}\right)^{\top} b+\mu^{i} \cdot h^{i} \forall i \in[m] \\
& & \lambda^{i} \geq 0, \mu^{i} \geq 0 \forall i \in[m]
\end{array}\right\} \text { Cone }
$$

Normalization constraint: either bound α or β.

Polyhedrality of maximal lattice-free sets is useful

- Let maximal lattice-free (or S-free) set be $T:=\left\{x \in \mathbb{R}^{n} \mid\left(g^{i}\right)^{\top} x \geq h^{i} \quad i \in[m]\right\}$.
- If $\alpha^{\top} x \leq \beta$ is valid for the disjunction:

$$
\bigvee_{i=1}^{m} P \cap\{x \in \mathbb{R}^{n} \mid \underbrace{\left(g^{i}\right)^{\top} x \leq h^{i}}_{\text {complement of a facet of } T}\}
$$

then $\alpha^{\top} x \leq \beta$ is a valid inequality for $P \cap \mathbb{Z}^{n}$.

- One approach to find inequality $\alpha^{\top} x \leq \beta$ to separate x^{*} : Use Farkas Lemma:

$$
\left.\begin{array}{ccc}
\max _{\alpha, \beta, \lambda, \mu} & \alpha^{\top} x^{*}-\beta \\
& \alpha^{\top}=\left(\lambda^{i}\right)^{\top} A+\mu^{i} \cdot\left(g^{i}\right)^{\top} \forall i \in[m] \\
\text { s.t. } & \beta \geq\left(\lambda^{i}\right)^{\top} b+\mu^{i} \cdot h^{i} \forall i \in[m] \\
& & \lambda^{i} \geq 0, \mu^{i} \geq 0 \forall i \in[m]
\end{array}\right\} \text { Cone }
$$

Normalization constraint: either bound α or β.

- See [Balas, Perregaard: (2003)] for a method to generate cuts for split disjunctions with just one copy of variables (instead of two copies).

Final comments

- A major topic of study 2005-2015: [Andersen, Louveaux, Weismantel, Wolsey (2007)], [Borozan Cornuéjols (2009)], [D. Wolsey (2010)] [Del Pia Weismantel (2012)], ...

Final comments

- A major topic of study 2005-2015: [Andersen, Louveaux, Weismantel, Wolsey (2007)], [Borozan Cornuéjols (2009)], [D. Wolsey (2010)] [Del Pia Weismantel (2012)], ...
- This is very general paradigm: See, for example,
- Disjunctive ideas to get convex hull of QCQPs: [Tawarmalani, Richard, Chung (2010)], [D., Santana (2020)]
- Intersection cuts for non-convex quadratically constrained quadratic programs. [Bienstock, Chen, Muñoz (2020)], [Muñoz, Serrano (2022)], [Chmiela, Muñoz, Serrano (2022)], [Muñoz, Paat, Serrano (2023)].

Final comments

- A major topic of study 2005-2015: [Andersen, Louveaux, Weismantel, Wolsey (2007)], [Borozan Cornuéjols (2009)], [D. Wolsey (2010)] [Del Pia Weismantel (2012)], ...
- This is very general paradigm: See, for example,
- Disjunctive ideas to get convex hull of QCQPs: [Tawarmalani, Richard, Chung (2010)], [D., Santana (2020)]
- Intersection cuts for non-convex quadratically constrained quadratic programs. [Bienstock, Chen, Muñoz (2020)], [Muñoz, Serrano (2022)], [Chmiela, Muñoz, Serrano (2022)], [Muñoz, Paat, Serrano (2023)].
- The real challenge is how to select the lattice-free set.

Section 3

Subadditive cutting-planes

A simple observation

- Subbaditive function: A function $f: \mathbb{R}^{m} \rightarrow \mathbb{R}$ is called subadditive if:

$$
f(u)+f(v) \geq f(u+v) \text { for all } u, v \in \mathbb{R}^{m} .
$$

- Non-decreasing function: A function $f: \mathbb{R}^{m} \rightarrow \mathbb{R}$ is called non-decreasing

$$
f(u) \leq f(v) \text { for all } u \leq v
$$

A simple observation

- Subbaditive function: A function $f: \mathbb{R}^{m} \rightarrow \mathbb{R}$ is called subadditive if:

$$
f(u)+f(v) \geq f(u+v) \text { for all } u, v \in \mathbb{R}^{m} .
$$

- Non-decreasing function: A function $f: \mathbb{R}^{m} \rightarrow \mathbb{R}$ is called non-decreasing if:

$$
f(u) \leq f(v) \text { for all } u \leq v
$$

Theorem ([Gomory, Johnson (1972ab)], [Jeroslow (1978)][Jeroslow (1979)], [Blair, Jeroslow (1982)])

$$
\text { Let } S:=\left\{x \in \mathbb{R}_{+}^{n} \mid \sum_{j=1}^{n} A^{j} x_{j} \geq b, x \in \mathbb{Z}^{n}\right\}
$$

where $A^{j} \in \mathbb{R}^{m}$ for $j \in[n]$ and $b \in \mathbb{R}^{m}$. Let $f: \mathbb{R}^{m} \rightarrow \mathbb{R}$ be a subadditive function, non-decreasing, such that $f(0)=0$, then

$$
\sum_{j=1}^{n} f\left(A^{j}\right) x_{j} \geq f(b)
$$

is a valid inequality for S.

Example of subadditive function

Consider the following set:

$$
S:=\left\{x \in \mathbb{Z}_{+}^{3} \left\lvert\,\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right] x_{1}+\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right] x_{2}+\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right] x_{3} \geq\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right.\right\}
$$

Example of subadditive function

Consider the following set:

$$
S:=\left\{x \in \mathbb{Z}_{+}^{3} \left\lvert\,\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right] x_{1}+\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right] x_{2}+\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right] x_{3} \geq\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right.\right\}
$$

Consider the function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$:

$$
f(u)=\left\lceil 0.5 \cdot\left(u_{1}+u_{2}+u_{3}\right)\right\rceil
$$

This function is

- subadditive,
- non-decreasing,
- and $f(0)=0$.

Example of subadditive function

Consider the following set:

$$
S:=\left\{x \in \mathbb{Z}_{+}^{3} \left\lvert\,\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right] x_{1}+\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right] x_{2}+\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right] x_{3} \geq\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right.\right\}
$$

Consider the function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$:

$$
f(u)=\left\lceil 0.5 \cdot\left(u_{1}+u_{2}+u_{3}\right)\right\rceil
$$

This function is

- subadditive,
- non-decreasing,
- and $f(0)=0$.

So we have the following valid inequality for S :

$$
f\left(\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]\right) x_{1}+f\left(\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]\right) x_{2}+f\left(\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]\right) x_{3} \geq f\left(\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right)
$$

Example of subadditive function

Consider the following set:

$$
S:=\left\{x \in \mathbb{Z}_{+}^{3} \left\lvert\,\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right] x_{1}+\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right] x_{2}+\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right] x_{3} \geq\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right.\right\}
$$

Consider the function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$:

$$
f(u)=\left\lceil 0.5 \cdot\left(u_{1}+u_{2}+u_{3}\right)\right\rceil
$$

This function is

- subadditive,
- non-decreasing,
- and $f(0)=0$.

Equivalently:

$$
x_{1}+x_{2}+x_{3} \geq 2
$$

which is a facet-defining inequity for $\operatorname{conv}(S)$.

Mixed integer version

Theorem ([Gomory, Johnson (1972ab)])
Consider the set:

$$
S:=\left\{x \in \mathbb{R}_{+}^{n} \mid \sum_{j=1}^{n} A^{j} x_{j} \geq b, x_{j} \in \mathbb{Z} j \in I\right\}
$$

where $A^{j} \in \mathbb{R}^{m}$ for $j \in[n]$ and $b \in \mathbb{R}^{m}$.

- Let $f: \mathbb{R}^{m} \rightarrow \mathbb{R}$ be a subadditive function, non-decreasing, such that $f(0)=0$, and

Mixed integer version

Theorem ([Gomory, Johnson (1972ab)])

Consider the set:

$$
S:=\left\{x \in \mathbb{R}_{+}^{n} \mid \sum_{j=1}^{n} A^{j} x_{j} \geq b, x_{j} \in \mathbb{Z} j \in I\right\}
$$

where $A^{j} \in \mathbb{R}^{m}$ for $j \in[n]$ and $b \in \mathbb{R}^{m}$.

- Let $f: \mathbb{R}^{m} \rightarrow \mathbb{R}$ be a subadditive function, non-decreasing, such that $f(0)=0$, and
Let $\bar{f}(u):=\underbrace{\lim \sup _{\epsilon \rightarrow 0^{+}}\left(\frac{f(u \epsilon)}{\epsilon}\right)}_{\text {Slope of } f \text { at origin in } u \text { direction }}$. Let $\bar{f}\left(A^{j}\right)<\infty$ for all $A^{j} \in[n] \backslash I$, then

$$
\sum_{j \in I} f\left(A^{j}\right) x_{j}+\sum_{j \in[n] \backslash I} \bar{f}\left(A^{j}\right) x_{j} \geq f(b)
$$

is a valid inequality for S.

Mixed integer version - variants

Theorem ([Gomory, Johnson (1972)])

Consider the set:

$$
S:=\left\{x \in \mathbb{R}_{+}^{n} \mid \sum_{j=1}^{n} A^{j} x_{j} \not 一 ⿻^{\prime} b, x_{j} \in \mathbb{Z} j \in I\right\} .
$$

where $A^{j} \in \mathbb{R}^{m}$ for $j \in[n]$ and $b \in \mathbb{R}^{m}$. Let

- Let $f: \mathbb{R}^{m} \rightarrow \mathbb{R}$ be a sub-additive function, non-decreasing, such that $f(0)=0$, and
- Let $\bar{f}(u):=\lim \sup _{\epsilon \rightarrow 0^{+}}\left(\frac{f(u \epsilon)}{\epsilon}\right)$. Let $\bar{f}\left(A^{j}\right)<\infty$ for all $A^{j} \in[n] \backslash I$, then

$$
\sum_{j \in I} f\left(A^{j}\right) x_{j}+\sum_{j \in[n] \backslash I} \bar{f}\left(A^{j}\right) x_{j} \geq f(b)
$$

A very very special sub-additive function: Gomory mixed integer cut (GMIC)
[Gomory, Johnson (1972ab)]

- $S:=\left\{(x, y) \in \mathbb{Z}_{+}^{n_{1}} \times \mathbb{R}_{+}^{n_{2}} \mid \sum_{j=1}^{n_{1}} a_{j} x_{j}+\sum_{i=1}^{n_{2}} d_{i} y_{i}=b\right\}$.

A very very special sub-additive function: Gomory mixed integer cut (GMIC)
[Gomory, Johnson (1972ab)]

- $S:=\left\{(x, y) \in \mathbb{Z}_{+}^{n_{1}} \times \mathbb{R}_{+}^{n_{2}} \mid \sum_{j=1}^{n_{1}} a_{j} x_{j}+\sum_{i=1}^{n_{2}} d_{i} y_{i}=b\right\}$.
- Let $\operatorname{frc}(a)=a-\lfloor a\rfloor$.
$-f^{G M I C}(u)=\min \left\{\frac{\operatorname{frc}(u)}{\operatorname{frc}(b)}, \frac{1-\operatorname{frc}(u)}{1-\operatorname{frc}(b)}\right\}, \overline{f G M I C}(u)=\left\{\begin{array}{cl}u / \operatorname{frc}(b) & u \geq 0 \\ (-u) /(1-\operatorname{frc}(b)) & u \leq 0\end{array}\right.$

A very very special sub-additive function: Gomory mixed integer cut (GMIC)
[Gomory, Johnson (1972ab)]

- $S:=\left\{(x, y) \in \mathbb{Z}_{+}^{n_{1}} \times \mathbb{R}_{+}^{n_{2}} \mid \sum_{j=1}^{n_{1}} a_{j} x_{j}+\sum_{i=1}^{n_{2}} d_{i} y_{i}=b\right\}$.
- Let $\operatorname{frc}(a)=a-\lfloor a\rfloor$.
$-f^{G M I C}(u)=\min \left\{\begin{array}{cl}\operatorname{frc}(u) \\ \operatorname{frc}(b)\end{array}, \frac{1-\operatorname{frc}(u)}{1-\operatorname{frc}(b)}\right\}, \overline{f G M I C}(u)=\left\{\begin{array}{cc}u / \operatorname{frc}(b) & u \geq 0 \\ (-u) /(1-\operatorname{frc}(b)) & u \leq 0\end{array}\right.$

- Gomory-mixed integer cut:

$$
\begin{array}{r}
\sum_{j \in\left[n_{1}\right], \operatorname{frc}\left(a_{j}\right) \leq \operatorname{frc}(b)} \frac{\operatorname{frc}\left(a_{j}\right)}{\operatorname{frc}(b)} x_{j}+\sum_{j \in\left[n_{1}\right], \operatorname{frc}\left(a_{j}\right) \geq \operatorname{frc}(b)} \frac{1-\operatorname{frc}\left(a_{j}\right)}{1-\operatorname{frc}(b)} x_{j} \\
\sum_{i \in\left[n_{2}\right], d_{i} \geq 0} \frac{d_{i}}{\operatorname{frc}(b)}+\sum_{i \in\left[n_{2}\right], d_{i} \leq 0} \frac{-d_{i}}{1-\operatorname{frc}(b)} \geq 1 .
\end{array}
$$

A zoo of subadditive functions

GMIC \diamond GMIC

GMIC \diamond Two Slope

GMIC \diamond Three Slope

Two Slope \triangle GMIC

Two Slope \diamond Two Slope

Two Slope \triangle Three Slope

Three Slope \diamond GMIC

Three Slope \diamond Two Slope

Three Slope \bigcirc Three Slope

A zoo of subadditive functions

- Functions, functions, and more functions: [Letchford and Lodi (2002)], [Gomory, Johnson (2003)], [Dash, Günlük (2006)], [D., Richard (2008)], [Kianfar, Fathi (2009)], [Richard, Li, Miller (2009)], [D., Richard (2010)], [D., Richard, Li, Miller (2010)], [Chen (2011)], [Basu, Conforti, Paat (2018)], [Basu, Conforti, Di Summa (2020)] ...

A zoo of subadditive functions

- Functions, functions, and more functions: [Letchford and Lodi (2002)], [Gomory, Johnson (2003)], [Dash, Günlük (2006)], [D., Richard (2008)], [Kianfar, Fathi (2009)], [Richard, Li, Miller (2009)], [D., Richard (2010)], [D., Richard, Li, Miller (2010)], [Chen (2011)], [Basu, Conforti, Paat (2018)], [Basu, Conforti, Di Summa (2020)] ...
- 'Properties' of these function: [D., Richard (2008)], [Basu, Conforti, Cornuéjols, Zambelli (2010)], [Cornuéjols and Molinaro (2024)], [Basu, R. Hildebrand, Köppe (2014abcd)] [Basu, Hildebrand, Köppe, Molinaro (2013)], [Köppe, Zhou (2017)], [Di Summa (2020)] ...

A zoo of subadditive functions

- Functions, functions, and more functions: [Letchford and Lodi (2002)], [Gomory, Johnson (2003)], [Dash, Günlük (2006)], [D., Richard (2008)], [Kianfar, Fathi (2009)], [Richard, Li, Miller (2009)], [D., Richard (2010)], [D., Richard, Li, Miller (2010)], [Chen (2011)], [Basu, Conforti, Paat (2018)], [Basu, Conforti, Di Summa (2020)] ...
- 'Properties' of these function: [D., Richard (2008)], [Basu, Conforti, Cornuéjols, Zambelli (2010)], [Cornuéjols and Molinaro (2024)], [Basu, R. Hildebrand, Köppe (2014abcd)] [Basu, Hildebrand, Köppe, Molinaro (2013)], [Köppe, Zhou (2017)], [Di Summa (2020)] ...
- Automatic search of these functions: [Köppe, Zhou (2016)] and follow up work.

A zoo of subadditive functions

- Functions, functions, and more functions: [Letchford and Lodi (2002)], [Gomory, Johnson (2003)], [Dash, Günlük (2006)], [D., Richard (2008)], [Kianfar, Fathi (2009)], [Richard, Li, Miller (2009)], [D., Richard (2010)], [D., Richard, Li, Miller (2010)], [Chen (2011)], [Basu, Conforti, Paat (2018)], [Basu, Conforti, Di Summa (2020)] ...
- 'Properties' of these function: [D., Richard (2008)], [Basu, Conforti, Cornuéjols, Zambelli (2010)], [Cornuéjols and Molinaro (2024)], [Basu, R. Hildebrand, Köppe (2014abcd)] [Basu, Hildebrand, Köppe, Molinaro (2013)], [Köppe, Zhou (2017)], [Di Summa (2020)] ...
- Automatic search of these functions: [Köppe, Zhou (2016)] and follow up work.
- Some review articles: [D., Richard (2010)], [Basu, Hildebrand, Köppe (2015)].

How good are these "subadditive cuts"?

Theorem ([Jeroslow (1978)], [Jeroslow (1979)], [Johnson (1973)], [Johnson (1974)], [Johnson (1979)])

Consider the set:

$$
S:=\left\{x \in \mathbb{R}_{+}^{n} \mid \sum_{j=1}^{n} A^{j} x_{j} \geq b, x_{j} \in \mathbb{Z} j \in I\right\}
$$

where all the data is rational. Then the convex hull of S can be obtained using inequalities generated by non-decreasing, subadditive functions (with $f(0)=0$).

How good are these "subadditive cuts"?

Theorem ([Jeroslow (1978)], [Jeroslow (1979)], [Johnson (1973)], [Johnson (1974)], [Johnson (1979)])

Consider the set:

$$
S:=\left\{x \in \mathbb{R}_{+}^{n} \mid \sum_{j=1}^{n} A^{j} x_{j} \geq b, x_{j} \in \mathbb{Z} j \in I\right\}
$$

where all the data is rational. Then the convex hull of S can be obtained using inequalities generated by non-decreasing, subadditive functions (with $f(0)=0$).

Only a particular type of subadditive functions called as Chvátal functions are necessary for the above result: [Blair, Jeroslow (1982)], [Basu, Martin, Ryan, Wang (2019)]

How good are these "subadditive cuts"?

Theorem ([Jeroslow (1978)], [Jeroslow (1979)], [Johnson (1973)], [Johnson (1974)], [Johnson (1979)])
 Consider the set:

$$
S:=\left\{x \in \mathbb{R}_{+}^{n} \mid \sum_{j=1}^{n} A^{j} x_{j} \geq b, x_{j} \in \mathbb{Z} j \in I\right\}
$$

where all the data is rational. Then the convex hull of S can be obtained using inequalities generated by non-decreasing, subadditive functions (with $f(0)=0$).

Theorem (Wolsey [1981])
Consider the set:

$$
S(b):=\left\{x \in \mathbb{Z}_{+}^{n} \mid \sum_{j=1}^{n} A^{j} x_{j}=b,\right\} .
$$

For A fixed, there is a finite list of subadditive functions that give the convex hull of $S(b)$ for all b.

How good are these "subadditive cuts"?

Theorem ([Jeroslow (1978)], [Jeroslow (1979)], [Johnson

 (1973)], [Johnson (1974)], [Johnson (1979)])Consider the set:

$$
S:=\left\{x \in \mathbb{R}_{+}^{n} \mid \sum_{j=1}^{n} A^{j} x_{j} \geq b, x_{j} \in \mathbb{Z} j \in I\right\}
$$

where all the data is rational. Then the convex hull of S can be obtained using inequalities generated by non-decreasing, subadditive functions (with $f(0)=0$).

Theorem ([D., Morán, Vielma (2012)])
Consider the set:

$$
S:=\left\{x \in \mathbb{R}_{+}^{n} \mid \sum_{j=1}^{n} A^{j} x_{j} \succeq_{k} b, x_{j} \in \mathbb{Z} j \in I\right\}
$$

where K is a proper cone and there exists a strictly feasible solution \hat{x}. Then the convex hull of S can be obtained using inequalities generated by non-decreasing (appropriately defined wrt K), subadditive functions (with $f(0)=0$).
Follow-up: [Kocuk, Morán (2019)]

Any connection between maximal lattice-free convex cuts and subadditive cuts?

- We can obtain the convex hull using maximal lattice-free convex cuts and also subadditive cuts - is there a connection?

Any connection between maximal lattice-free convex cuts and subadditive cuts?

- We can obtain the convex hull using maximal lattice-free convex cuts and also subadditive cuts - is there a connection?YES!

Any connection between maximal lattice-free convex cuts and subadditive cuts?

- We can obtain the convex hull using maximal lattice-free convex cuts and also subadditive cuts - is there a connection?YES!
One relationship via "intersection cuts" viewpoint of the lattice-free convex cuts for the set, $\left\{x \in \mathbb{Z}^{m}, z \in \mathbb{Z}_{+}^{n_{1}}, y \in \mathbb{R}_{+}^{n_{2}}, \mid x=b+A z+G y\right\}$. Cuts in (y, z)-space (Sketch):

> Subbadditive function (f)

Any connection between maximal lattice-free convex cuts and subadditive cuts?

- We can obtain the convex hull using maximal lattice-free convex cuts and also subadditive cuts - is there a connection?YES!
One relationship via "intersection cuts" viewpoint of the lattice-free convex cuts for the set, $\left\{x \in \mathbb{Z}^{m}, z \in \mathbb{Z}_{+}^{n_{1}}, y \in \mathbb{R}_{+}^{n_{2}}, \mid x=b+A z+G y\right\}$. Cuts in (y, z)-space (Sketch):

> Subbadditive function (f)

$$
\downarrow \quad\left(\text { Slope of } \mathrm{f}: \lim _{\epsilon \rightarrow 0^{+}} \frac{f(u \epsilon)}{\epsilon}\right)
$$

Any connection between maximal lattice-free convex cuts and subadditive cuts?

- We can obtain the convex hull using maximal lattice-free convex cuts and also subadditive cuts - is there a connection?YES!
One relationship via "intersection cuts" viewpoint of the lattice-free convex cuts for the set, $\left\{x \in \mathbb{Z}^{m}, z \in \mathbb{Z}_{+}^{n_{1}}, y \in \mathbb{R}_{+}^{n_{2}}, \mid x=b+A z+G y\right\}$. Cuts in (y, z)-space (Sketch):

Subbadditive function (f)
\downarrow (Slope of f: $\left.\lim _{\epsilon \rightarrow 0^{+}} \frac{f(u \epsilon)}{\epsilon}\right)$
\bar{f} Subadditive and sublinear function

Any connection between maximal lattice-free convex cuts and subadditive cuts?

- We can obtain the convex hull using maximal lattice-free convex cuts and also subadditive cuts - is there a connection?YES!
One relationship via "intersection cuts" viewpoint of the lattice-free convex cuts for the set, $\left\{x \in \mathbb{Z}^{m}, z \in \mathbb{Z}_{+}^{n_{1}}, y \in \mathbb{R}_{+}^{n_{2}}, \mid x=b+A z+G y\right\}$. Cuts in (y, z)-space (Sketch):

Subbadditive function (f)

$$
\downarrow \quad\left(\text { Slope of } \mathrm{f}: \lim _{\epsilon \rightarrow 0^{+}} \frac{f(u \epsilon)}{\epsilon}\right)
$$

\bar{f} Subadditive and sublinear function

$$
(T=\{x \mid \bar{f}(x-v) \leq 1\})^{a}
$$

Any connection between maximal lattice-free convex cuts and subadditive cuts?

- We can obtain the convex hull using maximal lattice-free convex cuts and also subadditive cuts - is there a connection?YES!
One relationship via "intersection cuts" viewpoint of the lattice-free convex cuts for the set, $\left\{x \in \mathbb{Z}^{m}, z \in \mathbb{Z}_{+}^{n_{1}}, y \in \mathbb{R}_{+}^{n_{2}}, \mid x=b+A z+G y\right\}$. Cuts in (y, z)-space (Sketch):

Subbadditive function (f)

$$
\downarrow \quad\left(\text { Slope of } \mathrm{f}: \lim _{\epsilon \rightarrow 0^{+}} \frac{f(u \epsilon)}{\epsilon}\right)
$$

\bar{f} Subadditive and sublinear function

$$
\downarrow \quad(T=\{x \mid \bar{f}(x-v) \leq 1\})^{a}
$$

```
A lattice-free convex set T around fractional point v
```

From \bar{f} to lattice-free convex set: [Borozan Cornuéjols (2009)], [Conforti et al.(2015)]

[^0]
Any connection between maximal lattice-free convex cuts and subadditive cuts?

- We can obtain the convex hull using maximal lattice-free convex cuts and also subadditive cuts - is there a connection? YES!

One relationship via "intersection cuts" viewpoint of the lattice-free convex cuts for the set, $\left\{x \in \mathbb{Z}^{m}, z \in \mathbb{Z}_{+}^{n_{1}}, y \in \mathbb{R}_{+}^{n_{2}}, \mid x=b+A z+G y\right\}$. Cuts in (y, z)-space (Sketch):

A lattice-free convex set T around fractional point v

Any connection between maximal lattice-free convex cuts and subadditive cuts?

- We can obtain the convex hull using maximal lattice-free convex cuts and also subadditive cuts - is there a connection? YES!
One relationship via "intersection cuts" viewpoint of the lattice-free convex cuts for the set, $\left\{x \in \mathbb{Z}^{m}, z \in \mathbb{Z}_{+}^{n_{1}}, y \in \mathbb{R}_{+}^{n_{2}}, \mid x=b+A z+G y\right\}$. Cuts in (y, z)-space (Sketch):

$$
\uparrow \quad \begin{gathered}
\text { support function of } \\
\text { "polar" of }(T-v)
\end{gathered}
$$

A lattice-free convex set T around fractional point v
From lattice-free convex set to \bar{f} : [Johnson (1974)], [D., Wolsey (2010)], [Basu, Cornuéjols, Zambelli (2011)], [Conforti et al. (2015)]

Any connection between maximal lattice-free convex cuts and subadditive cuts?

- We can obtain the convex hull using maximal lattice-free convex cuts and also subadditive cuts - is there a connection? YES!
One relationship via "intersection cuts" viewpoint of the lattice-free convex cuts for the set, $\left\{x \in \mathbb{Z}^{m}, z \in \mathbb{Z}_{+}^{n_{1}}, y \in \mathbb{R}_{+}^{n_{2}}, \mid x=b+A z+G y\right\}$. Cuts in (y, z)-space (Sketch):

Subadditive and sublinear function
$\uparrow \begin{gathered}\text { support function of } \\ \text { "polar" of }(T-v)\end{gathered}$

A lattice-free convex set T around fractional point v
From lattice-free convex set to \bar{f} : [Johnson (1974)], [D., Wolsey (2010)], [Basu, Cornuéjols, Zambelli (2011)], [Conforti et al. (2015)]

Any connection between maximal lattice-free convex cuts and subadditive cuts?

- We can obtain the convex hull using maximal lattice-free convex cuts and also subadditive cuts - is there a connection? YES!
One relationship via "intersection cuts" viewpoint of the lattice-free convex cuts for the set, $\left\{x \in \mathbb{Z}^{m}, z \in \mathbb{Z}_{+}^{n_{1}}, y \in \mathbb{R}_{+}^{n_{2}}, \mid x=b+A z+G y\right\}$. Cuts in (y, z)-space (Sketch):

Monoidal strengthening (Trivial lifting) and general lifting
(Not necessarily unique)
\bar{f} Subadditive and sublinear function
support function of
"polar" of (T - v)

A lattice-free convex set T around fractional point v
From \bar{f} to f : Monoidal Strengthening [Balas, Jeroslow (1980)], [D., Wolsey (2010)], Uniqueness: [Basu, Cornuéjols, Koéppe (2012)], [Campelo et al. (2013)], [Basu, Averkov (2014)], [Basu, Paat (2015)], [Basu, D., Paat (2019)]

Any connection between maximal lattice-free convex cuts and subadditive cuts?

- We can obtain the convex hull using maximal lattice-free convex cuts and also subadditive cuts - is there a connection? YES!
One relationship via "intersection cuts" viewpoint of the lattice-free convex cuts for the set, $\left\{x \in \mathbb{Z}^{m}, z \in \mathbb{Z}_{+}^{n_{1}}, y \in \mathbb{R}_{+}^{n_{2}}, \mid x=b+A z+G y\right\}$. Cuts in (y, z)-space (Sketch):

Subbadditive function (f)

Monoidal strengthening (Trivial lifting) and general lifting (Not necessarily unique)
\bar{f} Subadditive and sublinear function
support function of
"polar" of ($\mathrm{T}-\mathrm{v}$)

A lattice-free convex set T around fractional point v
From \bar{f} to f : Monoidal Strengthening [Balas, Jeroslow (1980)], [D., Wolsey (2010)], Uniqueness: [Basu, Cornuéjols, Koéppe (2012)], [Campelo et al. (2013)], [Basu, Averkov (2014)], [Basu, Paat (2015)], [Basu, D., Paat (2019)]

A more concrete example of equivalence

- $P:=\left\{x \in \mathbb{R}^{n} \mid A x=b, x \geq 0\right\}$ and $S:=P \cap\left\{x \mid x_{j} \in \mathbb{Z} \forall i \in I\right\}$.

Theorem ([Cornuéjols, Li (2002)])
Let:

- Split disjunctive closure: $\bigcap_{\pi \in \mathbb{Z}^{n}, \pi_{0} \in \mathbb{Z}} P^{\pi, \pi_{0}}=$ intersection of all split cuts for all possible split disjunctions .

A more concrete example of equivalence

- $P:=\left\{x \in \mathbb{R}^{n} \mid A x=b, x \geq 0\right\}$ and $S:=P \cap\left\{x \mid x_{j} \in \mathbb{Z} \forall i \in I\right\}$.

Theorem ([Cornuéjols, Li (2002)])
Let:

- Split disjunctive closure: $\bigcap_{\pi \in \mathbb{Z}^{n}, \pi_{0} \in \mathbb{Z}} P^{\pi, \pi_{0}}=$ intersection of all split cuts for all possible split disjunctions .
- Gomory mixed integer cut closure: For any $\lambda \in \mathbb{R}^{m}$, generate GMI cut for $\left\{x \in \mathbb{R}_{+}^{n} \mid \lambda^{\top} A x=\lambda^{\top} b, x_{j} \in \mathbb{Z} \forall i \in I\right\}$ and take the intersection of all these inequalities.

A more concrete example of equivalence

- $P:=\left\{x \in \mathbb{R}^{n} \mid A x=b, x \geq 0\right\}$ and $S:=P \cap\left\{x \mid x_{j} \in \mathbb{Z} \forall i \in I\right\}$.

Theorem ([Cornuéjols, Li (2002)])

Let:

- Split disjunctive closure: $\bigcap_{\pi \in \mathbb{Z}^{n}, \pi_{0} \in \mathbb{Z}} P^{\pi, \pi_{0}}=$ intersection of all split cuts for all possible split disjunctions .
- Gomory mixed integer cut closure: For any $\lambda \in \mathbb{R}^{m}$, generate GMI cut for $\left\{x \in \mathbb{R}_{+}^{n} \mid \lambda^{\top} A x=\lambda^{\top} b, x_{j} \in \mathbb{Z} \forall i \in I\right\}$ and take the intersection of all these inequalities.

Then:
Split disjunctive closure $=$ Gomory mixed integer cut closure.

Section 4

Algebraic ideas

Reformulation-Linearization Technique

[Sherali Adams (1990)]
(Closely related to Lift-and-project) [Balas, Ceria, Cornuéjols (1993)]
Consider the binary:

$$
\begin{array}{r}
\sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i} \forall i \in[m] \\
x_{j} \in\{0,1\} \forall j \in\left[n_{1}\right]
\end{array}
$$

Reformulation-Linearization Technique

[Sherali Adams (1990)]
(Closely related to Lift-and-project) [Balas, Ceria, Cornuéjols (1993)]
Lets re-write binary MILPs as:

$$
\begin{array}{r}
\sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i} \forall i \in[m] \\
x_{j}^{2}
\end{array}=x_{j} \forall j \in\left[n_{1}\right]
$$

Reformulation-Linearization Technique

[Sherali Adams (1990)]
(Closely related to Lift-and-project) [Balas, Ceria, Cornuéjols (1993)]
For convenience lets write as:

$$
\begin{aligned}
b_{i}-\sum_{j=1}^{n} a_{i j} x_{j} & \geq 0 \forall i \in[m] \\
x_{j} & \geq 0 \forall j \in\left[n_{1}\right] \\
1-x_{j} & \geq 0 \forall j \in\left[n_{1}\right] \\
x_{j}^{2} & =x_{j} \forall j \in\left[n_{1}\right]
\end{aligned}
$$

('Standard' RL Technique) Step 1: reformulation

Multiply linear constraints:

$$
\begin{aligned}
b_{i}-\sum_{j=1}^{n} a_{i j} x_{j} & \geq 0 \forall i \in[m] \\
x_{j} & \geq 0 \forall j \in\left[n_{1}\right] \\
1-x_{j} & \geq 0 \forall j \in\left[n_{1}\right] \\
x_{j}^{2} & =x_{j} \forall j \in\left[n_{1}\right]
\end{aligned}
$$

('Standard' RL Technique) Step 1: reformulation

Multiply linear constraints:

$$
\begin{aligned}
x_{k} \cdot\left(b_{i}-\sum_{j=1}^{n} a_{i j} x_{j}\right) & \geq 0 \forall i \in[m], \forall k \in\left[n_{1}\right] \\
\left(1-x_{k}\right) \cdot\left(b_{i}-\sum_{j=1}^{n} a_{i j} x_{j}\right) & \geq 0 \forall i \in[m], \forall k \in\left[n_{1}\right] \\
x_{k} \cdot x_{j} & \geq 0 \forall j \in\left[n_{1}\right], \forall k \in\left[n_{1}\right] \\
\left(1-x_{k}\right) \cdot x_{j} & \geq 0 \forall j \in\left[n_{1}\right], \forall k \in\left[n_{1}\right] \\
x_{k} \cdot\left(1-x_{j}\right) & \geq 0 \forall j \in\left[n_{1}\right], \forall k \in\left[n_{1}\right] \\
\left(1-x_{k}\right) \cdot\left(1-x_{j}\right) & \geq 0 \forall j \in\left[n_{1}\right], \forall k \in\left[n_{1}\right] \\
x_{j}^{2}=x_{j} & \forall j \in\left[n_{1}\right]
\end{aligned}
$$

('Standard' RL Technique) Step 1: linearization

- Replace $x_{j} \cdot x_{k}$ by a new variables, say $w_{j k}$

$$
\begin{aligned}
& x_{k} \cdot\left(b_{i}-\sum_{j=1}^{n} a_{i j} x_{j}\right) \geq 0 \forall i \in[m], \forall k \in\left[n_{1}\right] \\
&\left(1-x_{k}\right) \cdot\left(b_{i}-\sum_{j=1}^{n} a_{i j} x_{j}\right) \geq 0 \forall i \in[m], \forall k \in\left[n_{1}\right] \\
& x_{k} \cdot x_{j} \geq 0 \forall j \in\left[n_{1}\right], \forall k \in\left[n_{1}\right] \\
&\left(1-x_{k}\right) \cdot x_{j} \geq 0 \forall j \in\left[n_{1}\right], \forall k \in\left[n_{1}\right] \\
& x_{k} \cdot\left(1-x_{j}\right) \geq 0 \forall j \in\left[n_{1}\right], \forall k \in\left[n_{1}\right] \\
&\left(1-x_{k}\right) \cdot\left(1-x_{j}\right) \geq 0 \forall j \in\left[n_{1}\right], \forall k \in\left[n_{1}\right] \\
& x_{j}^{2}=x_{j} \forall j \in\left[n_{1}\right]
\end{aligned}
$$

('Standard' RL Technique) Step 1: linearization

- Replace $x_{j} \cdot x_{k}$ by a new variables, say $w_{j k}$

$$
\left.\begin{array}{rl}
\left(b_{i}-\sum_{j=1}^{n} a_{i j} x_{j}\right)-\left(b_{i} x_{k}-\sum_{j=1}^{n} a_{i j} w_{j k}\right) & \geq 0 \forall i \in[m], \forall k \in\left[n_{1}\right] \\
\left.b_{i} x_{k}-\sum_{j=1}^{n} a_{i j} w_{j k}\right) & \geq 0 \forall i \in[m], \forall k \in\left[n_{1}\right] \\
w_{j k} & \geq 0 \forall j \in\left[n_{1}\right], \forall k \in\left[n_{1}\right] \\
x_{j}-w_{j k} & \geq 0 \forall j \in\left[n_{1}\right], \forall k \in\left[n_{1}\right] \\
x_{k}-w_{j k} & \geq 0 \forall j \in\left[n_{1}\right], \forall k \in\left[n_{1}\right] \\
1-x_{k}-x_{j}+w_{j k} & \geq 0 \forall j \in\left[n_{1}\right], \forall k \in\left[n_{1}\right] \\
w_{j j} & =x_{j} \forall j \in\left[n_{1}\right]
\end{array}\right\} \text { RLT1(P }
$$

Whats the point?

[Sherali Adams (1990)]

- Let $P:=\left\{x \in[0,1]^{n_{1}} \times \mathbb{R}^{n_{2}} \mid A x \leq b\right\}$.
- Remember $P^{j, 0}=\operatorname{conv}\left\{\left(P \cap\left\{x \mid x_{j} \leq 0\right\}\right) \cup\left(P \cap\left\{x \mid x_{j} \geq 1\right\}\right)\right\}$.

Whats the point?

[Sherali Adams (1990)]

- Let $P:=\left\{x \in[0,1]^{n_{1}} \times \mathbb{R}^{n_{2}} \mid A x \leq b\right\}$.
- Remember $P^{j, 0}=\operatorname{conv}\left\{\left(P \cap\left\{x \mid x_{j} \leq 0\right\}\right) \cup\left(P \cap\left\{x \mid x_{j} \geq 1\right\}\right)\right\}$.

Theorem ([Balas, Ceria, Cornuéjols (1993)])
Let $P, \operatorname{RLT1}(P)$, and $P^{j}, 0$ be as defined above. Then:

$$
\operatorname{proj}_{x}(\operatorname{RLT} 1(P))=\bigcap_{j=1} P^{e^{j}, 0} .
$$

Whats the point?

[Sherali Adams (1990)]

- Let $P:=\left\{x \in[0,1]^{n_{1}} \times \mathbb{R}^{n_{2}} \mid A x \leq b\right\}$.
- Remember $P^{j, 0}=\operatorname{conv}\left\{\left(P \cap\left\{x \mid x_{j} \leq 0\right\}\right) \cup\left(P \cap\left\{x \mid x_{j} \geq 1\right\}\right)\right\}$.

Theorem ([Balas, Ceria, Cornuéjols (1993)])
Let $P, \operatorname{RLT1}(P)$, and $P^{e^{j}, 0}$ be as defined above. Then:

$$
\operatorname{proj}_{x}(\operatorname{RLT} 1(\mathrm{P}))=\bigcap_{j=1} P^{e^{j}, 0}
$$

- The power of RLT comes from the multiplication of inequalities!

Whats the point?

[Sherali Adams (1990)]

- Let $P:=\left\{x \in[0,1]^{n_{1}} \times \mathbb{R}^{n_{2}} \mid A x \leq b\right\}$.
- Remember $P^{j, 0}=\operatorname{conv}\left\{\left(P \cap\left\{x \mid x_{j} \leq 0\right\}\right) \cup\left(P \cap\left\{x \mid x_{j} \geq 1\right\}\right)\right\}$.

Theorem ([Balas, Ceria, Cornuéjols (1993)])
Let $P, \operatorname{RLT1}(P)$, and $P^{e^{j}, 0}$ be as defined above. Then:

$$
\operatorname{proj}_{x}(\operatorname{RLT} 1(\mathrm{P}))=\bigcap_{j=1} P^{e^{j}, 0}
$$

- The power of RLT comes from the multiplication of inequalities!
- The process of multiplying and linearization applied only to $x_{j} \geq 0$ and $1-x_{j} \geq 0$, then we obtain the McCormick inequalities.

Whats the point?

[Sherali Adams (1990)]

- Let $P:=\left\{x \in[0,1]^{n_{1}} \times \mathbb{R}^{n_{2}} \mid A x \leq b\right\}$.
- Remember $P^{j, 0}=\operatorname{conv}\left\{\left(P \cap\left\{x \mid x_{j} \leq 0\right\}\right) \cup\left(P \cap\left\{x \mid x_{j} \geq 1\right\}\right)\right\}$.

Theorem ([Balas, Ceria, Cornuéjols (1993)])
Let $P, \operatorname{RLT1}(P)$, and $P^{e^{j}, 0}$ be as defined above. Then:

$$
\operatorname{proj}_{x}(\operatorname{RLT} 1(\mathrm{P}))=\bigcap_{j=1} P^{e^{j}, 0}
$$

- The power of RLT comes from the multiplication of inequalities!
- The process of multiplying and linearization applied only to $x_{j} \geq 0$ and $1-x_{j} \geq 0$, then we obtain the McCormick inequalities.
- This technique generalizes to polynomial optimization.

Whats the point?

[Sherali Adams (1990)]

- Let $P:=\left\{x \in[0,1]^{n_{1}} \times \mathbb{R}^{n_{2}} \mid A x \leq b\right\}$.
- Remember $P^{j, 0}=\operatorname{conv}\left\{\left(P \cap\left\{x \mid x_{j} \leq 0\right\}\right) \cup\left(P \cap\left\{x \mid x_{j} \geq 1\right\}\right)\right\}$.

Theorem ([Balas, Ceria, Cornuéjols (1993)])
Let $P, \operatorname{RLT1}(P)$, and $P^{e^{j}, 0}$ be as defined above. Then:

$$
\operatorname{proj}_{x}(\operatorname{RLT} 1(\mathrm{P}))=\bigcap_{j=1} P^{e^{j}, 0}
$$

- The power of RLT comes from the multiplication of inequalities!
- The process of multiplying and linearization applied only to $x_{j} \geq 0$ and $1-x_{j} \geq 0$, then we obtain the McCormick inequalities.
- This technique generalizes to polynomial optimization.
- This process can be strengthened by adding implied semi-definite constraints.

Semidefinite programming relaxation + RLT

$$
\begin{aligned}
\left(b_{i} x_{k}-\sum_{j=1}^{n} a_{i j} w_{i j}\right) & \geq 0 \forall i \in[m], \forall k \in\left[n_{1}\right] \\
\left(b_{i}-\sum_{j=1}^{n} a_{i j} x_{j}\right)-\left(b_{i} x_{k}-\sum_{j=1}^{n} a_{i j} w_{i j}\right) & \geq 0 \forall i \in[m], \forall k \in\left[n_{1}\right] \\
w_{j k} & \geq 0 \forall j \in\left[n_{1}\right], \forall k \in\left[n_{1}\right] \\
x_{j}-w_{j k} & \geq 0 \forall j \in\left[n_{1}\right], \forall k \in\left[n_{1}\right] \\
x_{k}-w_{j k} & \geq 0 \forall j \in\left[n_{1}\right], \forall k \in\left[n_{1}\right] \\
1-x_{k}-x_{j}+w_{j k} & \geq 0 \forall j \in\left[n_{1}\right], \forall k \in\left[n_{1}\right] \\
w_{i j} & =x_{j} \forall j \in\left[n_{1}\right] \\
{\left[\begin{array}{ccccc}
1 & x_{1} & x_{2} & \ldots & x_{n} \\
x_{1} & w_{11} & w_{12} & \ldots & w_{1 n} \\
x_{2} & w_{21} & w_{22} & \ldots & w_{2 n} \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
x_{n} & w_{n 1} & w_{n 2} & \ldots & w_{n n}
\end{array}\right] } & \succeq 0 .
\end{aligned}
$$

Section 5

Relaxation based cuts

The main idea

- We would like generate cuts valid for $P \cap \mathbb{Z}^{n}$, which is challenging in general.

The main idea

- We would like generate cuts valid for $P \cap \mathbb{Z}^{n}$, which is challenging in general.
- we consider a relaxation of P, says Q that is we find valid inequalities for

$$
Q \cap \mathbb{Z}^{n},
$$

where $Q \supseteq P$.

The main idea

- We would like generate cuts valid for $P \cap \mathbb{Z}^{n}$, which is challenging in general.
- we consider a relaxation of P, says Q that is we find valid inequalities for

$$
Q \cap \mathbb{Z}^{n},
$$

where $Q \supseteq P$.

Some classic examples

- Knapsack polytope.

$$
\left\{x \in\{0,1\}^{n} \mid \sum_{j=1}^{n} a_{j} x_{j} \leq b\right\}
$$

Cover inequalities and other inequalities [Wolsey (1975)], [Balas (1975)], [Hammer, Johnson,Peled (1975)], Weismantel (1997), lifted cover inequalities [Zemel (1978)], [Balas, Zemel (1984)], [Crowder, Johnson, Padberg (1983)], Mixed binary: [Van Roy, Wolsey (1986)], [Gu, Nemhauser, Savelsberg (2000)], [Richard, de Farias Jr, Nemhauser (2003ab)] General Integer and continuous variables Knapsack constraint: [Atamtürk (2003)],[Atamtürk (2004)]

Some classic examples

- Knapsack polytope.
- Mixing set.

$$
\left\{(x, y) \in\{0,1\}^{n} \times \mathbb{R}_{+} \mid x_{i}+y \geq b_{i} \forall i \in[n]\right\}
$$

[Günlük, Pochet (2001)] Special case when $n=1$: Mixed integer rounding (MIR) inequalities.(\equiv Gomory mixed integer cut in closure.) [Nemhauser, Wolsey (1990)], [Dash, Günlük, Lodi (2010)], Extensions: [Marchand, Wolsey (1999)], [Van Vyve (2005)], [Atamtürk, Günlük (2010)], [D., Wolsey (2010)], Chance-constrained programming: [Luedtke, Ahmed, Nemhauser (2010)], [Küçükyavuz 92012)], [Kılınç-Karzan, Küçükyavuz, Lee (2022)]

Some classic examples

- Knapsack polytope.
- Mixing set.
- Fixed charge network flow. Submodularity: [Wolsey (1989)], [Atamtürk, S. Küçükyavuz, and B. Tezel (2017)], Flow cover: [Padberg, Van Roy, Wolsey (1985)], [Gu, Nemhauser, Savelsberg (2000)], Network design: [Atamtürk, Günlük (2007)]

$$
\text { Flow cover: }\left\{(x, y) \in\{0,1\}^{n} \times \mathbb{R}_{+}^{n} \mid \sum_{i=1}^{n} y_{i} \leq b, y_{i} \leq a_{i} x_{i} \forall i \in[n]\right\}
$$

Some classic examples

- Knapsack polytope.
- Mixing set.
- Fixed charge network flow.
- Clique. [Johnson, Padberg (1982)], [Atamtürk, Nemhauser, Savelsberg (2000)]

$$
\left\{x \in\{0,1\}^{n} \mid x_{i}+x_{j} \leq 1 \forall i, j \in[n] \times[n], i \neq j\right\}
$$

Some classic examples

- Knapsack polytope.
- Mixing set.
- Fixed charge network flow.
- Clique.
- Boolean quadric polytope. [Padberg (1989)], [Boros, Hammer (1993)], [De Simone (1996)] Cut polytope: [Barahona, Mahjoub (1986)], [Sherali, Lee, Adams (1995)] Review: [Letchford (2022)]

$$
\left\{\left.(x, w) \in\{0,1\}^{n} \times\{0,1\}^{\frac{(n)(n-1)}{2}} \right\rvert\, w_{i j}=x_{i} x_{j} \forall i, j \in[n] \times[n], i \neq j\right\}
$$

Connection to cuts for QCQPs. [Burer, Letchford (2009)]

Section 6

Measuring strength of cuts

Measuring strength of cuts - I

- Does it produce a finite algorithm?

Pure integer: [Gomory (1958)], [Conforti, De Santis, Di Summa, Rinaldi (2021)] Mixed integer: [Dash et al. (2013)], Matching: [Chandrasekaran, Végh, Vempala (2016)]

Measuring strength of cuts - I

- Does it produce a finite algorithm?

Pure integer: [Gomory (1958)], [Conforti, De Santis, Di Summa, Rinaldi (2021)] Mixed integer: [Dash et al. (2013)], Matching: [Chandrasekaran, Végh, Vempala (2016)]

- Does it produce the convex hull?

Matching polytope using Chvátal-Gomory: [Edmonds (1965)]

Measuring strength of cuts - I

- Does it produce a finite algorithm? Pure integer: [Gomory (1958)], [Conforti, De Santis, Di Summa, Rinaldi (2021)] Mixed integer: [Dash et al. (2013)], Matching: [Chandrasekaran, Végh, Vempala (2016)]
- Does it produce the convex hull?

Matching polytope using Chvátal-Gomory: [Edmonds (1965)]

- Approximation to the convex hull? Huge literature in CS theory.

Measuring strength of cuts - I

- Does it produce a finite algorithm? Pure integer: [Gomory (1958)], [Conforti, De Santis, Di Summa, Rinaldi (2021)] Mixed integer: [Dash et al. (2013)], Matching: [Chandrasekaran, Végh, Vempala (2016)]
- Does it produce the convex hull?

Matching polytope using Chvátal-Gomory: [Edmonds (1965)]

- Approximation to the convex hull? Huge literature in CS theory.
- Are they facet-defining for the relaxation?

Group relaxation: [Gomory, Johnson (1972ab)], [Johnson (1974)], [Gomory, Johnson (2003)], [D., Richard, Miller (2010)], [Basu, Hildebrand, Molinaro (2018)], [Basu, Conforti, Cornuéjols, Zambelli (2010)], [Cornuéjols and Molinaro (2024)], [Basu, R. Hildebrand, Köppe (2014abcd)] [Basu, Hildebrand, Köppe, Molinaro (2013)], [Köppe, Zhou (2017)], [Di Summa (2020)]

Measuring strength of cuts - II

Rank of a cut-plane procedure:

- Closure of cutting plane: Add all cuts that can be generated by the cutting-plane procedure.

Measuring strength of cuts - II

Rank of a cut-plane procedure:

- Closure of cutting plane: Add all cuts that can be generated by the cutting-plane procedure.
- Closure may not be the convex hull.

Measuring strength of cuts - II

Rank of a cut-plane procedure:

- Closure of cutting plane: Add all cuts that can be generated by the cutting-plane procedure.
- Closure may not be the convex hull.
- So we may obtain the closure of the closure, this is the second closure.

Measuring strength of cuts - II

Rank of a cut-plane procedure:

- Closure of cutting plane: Add all cuts that can be generated by the cutting-plane procedure.
- Closure may not be the convex hull.
- So we may obtain the closure of the closure, this is the second closure.
- If r is the smallest integer such that the r th closure is the convex hull, we say the rank is r.

Measuring strength of cuts - II

Rank of a cut-plane procedure:

- Closure of cutting plane: Add all cuts that can be generated by the cutting-plane procedure.
- Closure may not be the convex hull.
- So we may obtain the closure of the closure, this is the second closure.
- If r is the smallest integer such that the r th closure is the convex hull, we say the rank is r.

Theorem (Pure integer program)
Let P be an arbitrary rational polyhedron. Then for Chvátal-Gomory cuts, we have the following:

- The rank is finite. [Schrijver (1980)]

Measuring strength of cuts - II

Rank of a cut-plane procedure:

- Closure of cutting plane: Add all cuts that can be generated by the cutting-plane procedure.
- Closure may not be the convex hull.
- So we may obtain the closure of the closure, this is the second closure.
- If r is the smallest integer such that the r th closure is the convex hull, we say the rank is r.

Theorem (Pure integer program)

Let P be an arbitrary rational polyhedron. Then for Chvátal-Gomory cuts, we have the following:

- The rank is finite. [Schrijver (1980)]
- If $P \subseteq[0,1]^{n}$, then the rank is bounded by $\mathcal{O}\left(n^{2} \operatorname{logn}\right)$. [Eisenbrand, Schulz (2003)]
- There exists a binary knapsack polytope whose rank is at least $\Omega\left(n^{2}\right)$. [Rothvoß, Sanitá (2017)]

Measuring strength of cuts - II

Rank of a cut-plane procedure:

- Closure of cutting plane: Add all cuts that can be generated by the cutting-plane procedure.
- Closure may not be the convex hull.
- So we may obtain the closure of the closure, this is the second closure.
- If r is the smallest integer such that the r th closure is the convex hull, we say the rank is r.

Theorem (Pure integer program)

Let P be an arbitrary rational polyhedron. Then for Chvátal-Gomory cuts, we have the following:

- The rank is finite. [Schrijver (1980)]
- If $P \subseteq[0,1]^{n}$, then the rank is bounded by $\mathcal{O}\left(n^{2} \operatorname{logn}\right)$. [Eisenbrand, Schulz (2003)]
- There exists a binary knapsack polytope whose rank is at least $\Omega\left(n^{2}\right)$. [Rothvoß, Sanitá (2017)]

Theorem
Let $P \subseteq[0,1]^{n}$ be an arbitrary rational polyhedron. Then the rank of the $R L T$ procedure is at most n.

How do solvers select cuts to use?

How do solvers select cuts to use?

I do not know.

How do solvers select cuts to use?

But, here is a list of things that might matter:

- Maximize depth of cut: $\frac{\alpha^{\top} x^{*}-\beta}{\|\alpha\|_{2}}$

Not always the best [Andreello, Caprara, Fischetti (2007)], [Amaldi, Coniglio, Gualandi (2014)].

- Consider a point x^{*} that can be separated by the inequality: $\alpha^{\top} x \leq \beta$, for a packing [Shah, D. , Molinaro problem.
- Suppose $\alpha_{1}>0$ and $x_{1}^{*}=0$.
- Then setting $\alpha_{1}=0$ is a valid inequality (packing problem) and improves the depth of cut: However this cut is dominated by
 the original inequality!

How do solvers select cuts to use?

But, here is a list of things that might matter:

- Maximize depth of cut: $\frac{\alpha^{\top} x^{*}-\beta}{\|\alpha\|_{2}}$

Not always the best [Andreello, Caprara, Fischetti (2007)], [Amaldi, Coniglio, Gualandi (2014)].

- Consider a point x^{*} that can be separated by the inequality: $\alpha^{\top} x \leq \beta$, for a packing [Shah, D. , Molinaro problem.
- Suppose $\alpha_{1}>0$ and $x_{1}^{*}=0$.
- Then setting $\alpha_{1}=0$ is a valid inequality (packing problem) and improves the depth of cut: However this cut is dominated by
 the original inequality!
Variants of depth of cut: [Wesselmann, Suhl (2007)], Volume: [Basu, Conforti, Di Summa, Zambelli (2019)], [Zhou (2023)]

How do solvers select cuts to use?

But, here is a list of things that might matter:

- Maximize depth of cut: $\frac{\alpha^{\top} x^{*}-\beta}{\|\alpha\|_{2}}$
- Cuts separating multiple known fractional point/point in relative interior or even interior. [Fischetti, Salvagnin (2009)], [Turner, Berthold, Besançon, Koch (2023)]

How do solvers select cuts to use?

But, here is a list of things that might matter:

- Maximize depth of cut: $\frac{\alpha^{\top} x^{*}-\beta}{\|\alpha\|_{2}}$
- Cuts separating multiple known fractional point/point in relative interior or even interior.
- Parallelism between cuts/objective function.

How do solvers select cuts to use?

But, here is a list of things that might matter:

- Maximize depth of cut: $\frac{\alpha^{\top} x^{*}-\beta}{\|\alpha\|_{2}}$
- Cuts separating multiple known fractional point/point in relative interior or even interior.
- Parallelism between cuts/objective function.
- Sparsity. [Amaldi, Coniglio, Gualandi (2014)], [D., Molinaro, Wang (2015)], [D., Molinaro, Wang (2018)]

How do solvers select cuts to use?

But, here is a list of things that might matter:

- Maximize depth of cut: $\frac{\alpha^{\top} x^{*}-\beta}{\|\alpha\|_{2}}$
- Cuts separating multiple known fractional point/point in relative interior or even interior.
- Parallelism between cuts/objective function.
- Sparsity.
- Facet-defining or not?

Closely related to normalization for cut-generating LP. [Conforti, Wolsey (2019)]

How many cuts to add?

- [Balas, Ceria, Cornuéjols, Natraj (1996)]

How many cuts to add?

- [Balas, Ceria, Cornuéjols, Natraj (1996)]
- [Shah, D., Molinaro (2024)]

Gap Closed by Cut

Some review papers

- Theoretical challenges towards cutting-plane selection. D., Molinaro (2018).
- Light on the infinite group relaxation. Basu, Hildebrand, Koëppe (2016).
- Lifting techniques for mixed integer programming, Richard (2011).
- The group-theoretic approach in mixed integer programming. D., Richard (2010).
- Cutting planes in integer and mixed integer programming. Marchand, Martin, Weismantel, Wolsey (2002).
- Progress in linear programming-based algorithms for integer programming: an exposition. Johnson, Nemhauser, Savelsbergh (2000).

Thank You!

[^0]: ${ }^{a}$ With proper scaling of \bar{f}

