
Branch-and-Bound with Predictions
for Variable Selection

Yatharth Dubey
(University of Illinois at Urbana-Champaign)

VARIABLE SELECTION

Certifying bounds in pure binary ILP:

where
max {cx : x ∈ P ∩ {0,1}n} ≤ v*

P = {x ∈ [0,1]n : Ax ≤ b}, A ∈ ℤm×n, b ∈ ℤm

VARIABLE SELECTION

≤ v*

≤ v*

x1 = 0

x2 = 0 x2 = 1

x1 = 1

≤ v* ≤ v*

x3 = 0 x3 = 1

Certifying bounds in pure binary ILP:

where

Constructing a BB tree that certifies a bound is
completely determined by the variable selection rule

max {cx : x ∈ P ∩ {0,1}n} ≤ v*
P = {x ∈ [0,1]n : Ax ≤ b}, A ∈ ℤm×n, b ∈ ℤm

VARIABLE SELECTION

≤ v*

≤ v*

x1 = 0

x2 = 0 x2 = 1

x1 = 1

≤ v* ≤ v*

x3 = 0 x3 = 1

Certifying bounds in pure binary ILP:

where

Constructing a BB tree that certifies a bound is
completely determined by the variable selection rule

Importance:

max {cx : x ∈ P ∩ {0,1}n} ≤ v*
P = {x ∈ [0,1]n : Ax ≤ b}, A ∈ ℤm×n, b ∈ ℤm

total time = time per node × # of nodes

VARIABLE SELECTION

≤ v*

≤ v*

x1 = 0

x2 = 0 x2 = 1

x1 = 1

≤ v* ≤ v*

x3 = 0 x3 = 1

Certifying bounds in pure binary ILP:

where

Constructing a BB tree that certifies a bound is
completely determined by the variable selection rule

Importance:

Most infeasible: fast, too uninformed

Strong branching: informed, too costly per node

max {cx : x ∈ P ∩ {0,1}n} ≤ v*
P = {x ∈ [0,1]n : Ax ≤ b}, A ∈ ℤm×n, b ∈ ℤm

total time = time per node × # of nodes

VARIABLE SELECTION

≤ v*

≤ v*

x1 = 0

x2 = 0 x2 = 1

x1 = 1

≤ v* ≤ v*

x3 = 0 x3 = 1

Certifying bounds in pure binary ILP:

where

Constructing a BB tree that certifies a bound is
completely determined by the variable selection rule

Importance:

Most infeasible: fast, too uninformed

Strong branching: informed, too costly per node

How can we do time-efficient and informed branching at each node?

max {cx : x ∈ P ∩ {0,1}n} ≤ v*
P = {x ∈ [0,1]n : Ax ≤ b}, A ∈ ℤm×n, b ∈ ℤm

total time = time per node × # of nodes

How can we do time-efficient and informed branching at each node?

A compromise—Reliability Branching: do strong branching early in the tree, until we
have “enough information” about how each variable affects the objective; use this
information through the rest of the tree

ML FOR VARIABLE SELECTION

How can we do time-efficient and informed branching at each node?

A compromise—Reliability Branching: do strong branching early in the tree, until we
have “enough information” about how each variable affects the objective; use this
information through the rest of the tree

A recent insight—Machine learning!

ML FOR VARIABLE SELECTION

ML FOR VARIABLE SELECTION

How can we do time-efficient and informed branching at each node?

A compromise—Reliability Branching: do strong branching early in the tree, until we
have “enough information” about how each variable affects the objective; use this
information through the rest of the tree

A recent insight—Machine learning!

Existing literature on ML to branch: how to use strong branching as an expert to imitate

How can we do time-efficient and informed branching at each node?

A compromise—Reliability Branching: do strong branching early in the tree, until we
have “enough information” about how each variable affects the objective; use this
information through the rest of the tree

A recent insight—Machine learning!

Existing literature on ML to branch: how to use strong branching as an expert to imitate
(The idea: obtain a fast approximation of strong branching scores/relative strong
branching ranking)

ML FOR VARIABLE SELECTION

How can we do time-efficient and informed branching at each node?

A compromise—Reliability Branching: do strong branching early in the tree, until we
have “enough information” about how each variable affects the objective; use this
information through the rest of the tree

A recent insight—Machine learning!

Existing literature on ML to branch: how to use strong branching as an expert to imitate
(The idea: obtain a fast approximation of strong branching scores/relative strong
branching ranking)

But… is strong branching the expert we should be imitating?
Next, we give a framework through which we can think about this question

ML FOR VARIABLE SELECTION

EXPERTS FOR VARIABLE SELECTION

Strong Branching: (below is the LP optimal value of subproblem)

At subproblem branch on

v(S) S

S j* = arg max
j∈C⊂n

(v(S) − v(Sj=0)) + (v(S) − v(Sj=1)){

Δ−
j Δ+

j

{

EXPERTS FOR VARIABLE SELECTION

Strong Branching: (below is the LP optimal value of subproblem)

At subproblem branch on

Equivalently, branch on

v(S) S

S j* = arg max
j∈C⊂n

(v(S) − v(Sj=0)) + (v(S) − v(Sj=1))

j* = arg min
j∈C⊂n

v(Sj=0) + v(Sj=1)

EXPERTS FOR VARIABLE SELECTION

Strong Branching: (below is the LP optimal value of subproblem)

At subproblem branch on

Equivalently, branch on

i.e., it chooses the pair of subproblems greedily in terms of the objective

v(S) S

S j* = arg max
j∈C⊂n

(v(S) − v(Sj=0)) + (v(S) − v(Sj=1))

j* = arg min
j∈C⊂n

v(Sj=0) + v(Sj=1)

EXPERTS FOR VARIABLE SELECTION

Strong Branching: (below is the LP optimal value of subproblem)

At subproblem branch on

Equivalently, branch on

i.e., it chooses the pair of subproblems greedily in terms of the objective

But branch-and-bound actually admits an optimal recurrence relation:

where is the size of the smallest BB tree certifying bound for subproblem

v(S) S

S j* = arg max
j∈C⊂n

(v(S) − v(Sj=0)) + (v(S) − v(Sj=1))

j* = arg min
j∈C⊂n

v(Sj=0) + v(Sj=1)

θ(S, v*) = min
j∈[n]

θ(Sj=0, v*) + θ(Sj=1, v*)

θ(S, v*) v* S

EXPERTS FOR VARIABLE SELECTION

Strong Branching: (below is the LP optimal value of subproblem)

At subproblem branch on

Equivalently, branch on

i.e., it chooses the pair of subproblems greedily in terms of the objective

But branch-and-bound actually admits an optimal recurrence relation:

where is the size of the smallest BB tree certifying bound for subproblem

This suggests branching on

(which would obtain a BB tree of minimum size)

v(S) S

S j* = arg max
j∈C⊂n

(v(S) − v(Sj=0)) + (v(S) − v(Sj=1))

j* = arg min
j∈C⊂n

v(Sj=0) + v(Sj=1)

θ(S, v*) = min
j∈[n]

θ(Sj=0, v*) + θ(Sj=1, v*)

θ(S, v*) v* S

j* = arg min
j∈[n]

θ(Sj=0, v*) + θ(Sj=1, v*)

ESTIMATING THE OPTIMAL RULE

Optimal rule: at subproblem , branch on

where is the size of the smallest BB tree certifying bound for subproblem

S j* = arg min
j∈[n]

θ(Sj=0, v*) + θ(Sj=1, v*)

θ(S, v*) v* S

ESTIMATING THE OPTIMAL RULE

Optimal rule: at subproblem , branch on

where is the size of the smallest BB tree certifying bound for subproblem

Challenge: computing all necessary values of is at least as hard as solving IP!

S j* = arg min
j∈[n]

θ(Sj=0, v*) + θ(Sj=1, v*)

θ(S, v*) v* S

θ(S, v*)

ESTIMATING THE OPTIMAL RULE

Optimal rule: at subproblem , branch on

where is the size of the smallest BB tree certifying bound for subproblem

Challenge: computing all necessary values of is at least as hard as solving IP!

This motivates the need for an estimate of

Then, we can branch according to :

S j* = arg min
j∈[n]

θ(Sj=0, v*) + θ(Sj=1, v*)

θ(S, v*) v* S

θ(S, v*)

̂θ(S, v*) θ(S, v*)

̂θ(S, v*) j* = arg min
j∈[n]

̂θ(Sj=0, v*) + ̂θ(Sj=1, v*)

ESTIMATING THE OPTIMAL RULE

Optimal rule: at subproblem , branch on

where is the size of the smallest BB tree certifying bound for subproblem

Challenge: computing all necessary values of is at least as hard as solving IP!

This motivates the need for an estimate of

Then, we can branch according to :

e.g., strong branching branches according to an estimate

S j* = arg min
j∈[n]

θ(Sj=0, v*) + θ(Sj=1, v*)

θ(S, v*) v* S

θ(S, v*)

̂θ(S, v*) θ(S, v*)

̂θ(S, v*) j* = arg min
j∈[n]

̂θ(Sj=0, v*) + ̂θ(Sj=1, v*)

̂θgap(S, v*) = f(v(S) − v*)

ESTIMATING THE OPTIMAL RULE

Optimal rule: at subproblem , branch on

where is the size of the smallest BB tree certifying bound for subproblem

Challenge: computing all necessary values of is at least as hard as solving IP!

This motivates the need for an estimate of

Then, we can branch according to :

e.g., strong branching branches according to an estimate

S j* = arg min
j∈[n]

θ(Sj=0, v*) + θ(Sj=1, v*)

θ(S, v*) v* S

θ(S, v*)

̂θ(S, v*) θ(S, v*)

̂θ(S, v*) j* = arg min
j∈[n]

̂θ(Sj=0, v*) + ̂θ(Sj=1, v*)

̂θgap(S, v*) = f(v(S) − v*)

Question 1: How does the quality of the estimate affect the size of the resulting

tree? If will we get a near-minimum-size tree?̂θ(S, v*) ≈ θ(S, v*)

ESTIMATING THE OPTIMAL RULE

Optimal rule: at subproblem , branch on

where is the size of the smallest BB tree certifying bound for subproblem

Challenge: computing all necessary values of is at least as hard as solving IP!

This motivates the need for an estimate of

Then, we can branch according to :

e.g., strong branching branches according to an estimate

S j* = arg min
j∈[n]

θ(Sj=0, v*) + θ(Sj=1, v*)

θ(S, v*) v* S

θ(S, v*)

̂θ(S, v*) θ(S, v*)

̂θ(S, v*) j* = arg min
j∈[n]

̂θ(Sj=0, v*) + ̂θ(Sj=1, v*)

̂θgap(S, v*) = f(v(S) − v*)

Question 1: How does the quality of the estimate affect the size of the resulting

tree? If will we get a near-minimum-size tree?̂θ(S, v*) ≈ θ(S, v*)

Question 2: How can we get a good estimate Not clear since obtaining

samples with true supervised labels is not computationally viable

̂θ?

θ(S, v*)

We assume where θ(S, v*) = ̂θ(S, v*) + r ̂θ(S, v*) r ̂θ(S, v*) ∼ N(0, σ2)

QUALITY OF AN ESTIMATE

We assume where

Consider the following definition capturing the error of an estimate

where

θ(S, v*) = ̂θ(S, v*) + r ̂θ(S, v*) r ̂θ(S, v*) ∼ N(0, σ2)

̂θ

ϵ ̂θ(S, v*) = θ(Sj′ =0) + θ(Sj′ =1) − min
j∈[n] [θ(Sj=0) + θ(Sj=1)]

j′ = arg min
j∈[n]

̂θ(Sj=0) + ̂θ(Sj=1)

QUALITY OF AN ESTIMATE

We assume where

Consider the following definition capturing the error of an estimate

where

θ(S, v*) = ̂θ(S, v*) + r ̂θ(S, v*) r ̂θ(S, v*) ∼ N(0, σ2)

̂θ

ϵ ̂θ(S, v*) = θ(Sj′ =0) + θ(Sj′ =1) − min
j∈[n] [θ(Sj=0) + θ(Sj=1)]

j′ = arg min
j∈[n]

̂θ(Sj=0) + ̂θ(Sj=1)

QUALITY OF AN ESTIMATE

S
xj*

K K + ϵ ̂θ(S, v*)

S
xj′

We assume where

Consider the following definition capturing the error of an estimate

where

θ(S, v*) = ̂θ(S, v*) + r ̂θ(S, v*) r ̂θ(S, v*) ∼ N(0, σ2)

̂θ

ϵ ̂θ(S, v*) = θ(Sj′ =0) + θ(Sj′ =1) − min
j∈[n] [θ(Sj=0) + θ(Sj=1)]

j′ = arg min
j∈[n]

̂θ(Sj=0) + ̂θ(Sj=1)

QUALITY OF AN ESTIMATE

S
xj*

K K + ϵ ̂θ(S, v*)

S
xj′

We assume where

Consider the following definition capturing the error of an estimate

where

θ(S, v*) = ̂θ(S, v*) + r ̂θ(S, v*) r ̂θ(S, v*) ∼ N(0, σ2)

̂θ

ϵ ̂θ(S, v*) = θ(Sj′ =0) + θ(Sj′ =1) − min
j∈[n] [θ(Sj=0) + θ(Sj=1)]

j′ = arg min
j∈[n]

̂θ(Sj=0) + ̂θ(Sj=1)

QUALITY OF AN ESTIMATE

S
xj*

K K + ϵ ̂θ(S, v*)

S
xj′

BETTER ESTIMATES MEAN SMALLER TREES

BETTER ESTIMATES MEAN SMALLER TREES

Proposition (D.)
Let be estimates such that and with

. Then, .

̂θ1, ̂θ2 r ̂θ1
(S, v*) ∼ N(0, σ2

1) r ̂θ2
(S, v*) ∼ N(0, σ2

2)
σ2 > σ1 𝔼 [ϵ ̂θ2

(S, v*)] > 𝔼 [ϵ ̂θ1
(S, v*)]

BETTER ESTIMATES MEAN SMALLER TREES

Proposition (D.)
Let be estimates such that and with

. Then, .

̂θ1, ̂θ2 r ̂θ1
(S, v*) ∼ N(0, σ2

1) r ̂θ2
(S, v*) ∼ N(0, σ2

2)
σ2 > σ1 𝔼 [ϵ ̂θ2

(S, v*)] > 𝔼 [ϵ ̂θ1
(S, v*)]

Theorem (D.)
Let be such that , where , for all possible
subproblems , and let be the BB tree certifying bound for the integer
program that branches according to . Then, .

̂θ 𝔼 [ϵ ̂θ(S, v*)] = α θ(S, v*) α ∈ [0,1]
S 𝒯 ̂θ(P, v*) v*

P ̂θ 𝔼 [|𝒯 ̂θ(P, v*) |] = (1 + α)n θ(P, v*)

ESTIMATING A SIGNAL

We settle for an estimate of a more easily computable, accurate signal ̂θ ≈ θsignal ≈ θ

STRONG BRANCHING AS A SIGNAL

We settle for an estimate of a more easily computable, accurate signal

Recall that strong branching can be interpreted as branching according to a signal

 where is any positive monotone function

̂θ ≈ θsignal ≈ θ

θgap(S, v*) = f(v(S) − v*) f

We settle for an estimate of a more easily computable, accurate signal

Recall that strong branching can be interpreted as branching according to a signal

 where is any positive monotone function

̂θ ≈ θsignal ≈ θ

θgap(S, v*) = f(v(S) − v*) f

STRONG BRANCHING AS A SIGNAL

lo
g

θ(
S,

v*
)

θgap(S, v*)

rθgap
(S, v*) ∼ N(0, 0.40182)

We settle for an estimate of a more easily computable, accurate signal

Recall that strong branching can be interpreted as branching according to a signal

 where is any positive monotone function

We propose two other signals:

̂θ ≈ θsignal ≈ θ

θgap(S, v*) = f(v(S) − v*) f

θmostinf(S, v*) = f(|𝒯mostinf(S, v*) |)

θsb(S, v*) = f(|𝒯sb(S, v*) |)

IMPERFECT, BUT GOOD SIGNALS

lo
g

θ(
S,

v*
)

θgap(S, v*)

rθgap
(S, v*) ∼ N(0, 0.40182)

We settle for an estimate of a more easily computable, accurate signal

Recall that strong branching can be interpreted as branching according to a signal

 where is any positive monotone function

We propose two other signals:

̂θ ≈ θsignal ≈ θ

θgap(S, v*) = f(v(S) − v*) f

θmostinf(S, v*) = f(|𝒯mostinf(S, v*) |)

θsb(S, v*) = f(|𝒯sb(S, v*) |)

IMPERFECT, BUT GOOD SIGNALS

Disclaimer: This data comes from random
multi-dimensional knapsack problems, where
strong branching is known to struggle

lo
g

θ(
S,

v*
)

θgap(S, v*)

rθgap
(S, v*) ∼ N(0, 0.40182)

lo
g

θ(
S,

v*
)

rθgap
(S, v*) ∼ N(0, 0.40182)

IMPERFECT, BUT GOOD SIGNALS

θgap(S, v*)

lo
g

θ(
S,

v*
)

rθmostinf
(S, v*) ∼ N(0, 0.18422)

log θmostinf(S, v*)

lo
g

θ(
S,

v*
)

rθsb
(S, v*) ∼ N(0, 0.12862)

log θsb(S, v*)

The theory tells us BB trees branching according to these stronger signals should
produce smaller trees than those produced by strong branching

IMPERFECT, BUT GOOD SIGNALS

The theory tells us BB trees branching according to these stronger signals should
produce smaller trees than those produced by strong branching

e.g., branching according to :

At subproblem , branch on the variable

θmostinf

S arg min
j∈[n]

|𝒯mostinf(Sj=0, v*) | + |𝒯mostinf(Sj=1, v*) |

IMPERFECT, BUT GOOD SIGNALS

Indeed, we see that the BB trees branching according to these stronger signals are
significantly smaller than those produced by strong branching

IMPERFECT, BUT GOOD SIGNALS

geomean +/- geostd

37.44 +/- 1.91

28.83 +/- 1.74

27.68 +/- 1.71

|𝒯strong |

|𝒯θmostinf
|

|𝒯θsb
|

RELATIVE RANKING — FREQUENCY

𝒯strong 𝒯θmostinf
𝒯θsb

BB trees branching according to these stronger signals are significantly smaller than
those produced by strong branching even when strong branching is excellent

A MODERATE STRESS TEST

geomean +/- geostd

135.69 +/- 2.69

18.39 +/- 2.08

21.25 +/- 2.25

14.14 +/- 1.99

|𝒯mostinf |

|𝒯strong |

|𝒯θmostinf
|

|𝒯θreliability
|

RELATIVE RANKING — FREQUENCY

𝒯mostinf 𝒯strong

𝒯θmostinf
𝒯θreliability

Data:

Randomly generated max stable

set problems on Albert-Barabasi

graphs (100 nodes, affinity=8)

Clique cover relaxation

RECAP, SO FAR

Most of the successful ML for BB research aims to approximate (with ML) the signal
 with some learned estimate θgap

̂θgap

Most of the successful ML for BB research aims to approximate (with ML) the signal
 with some learned estimate

Preliminary experiments show that can actually be a fairly noisy signal (i.e., with

significant variance from)

θgap
̂θgap

θgap

θ

RECAP, SO FAR

Most of the successful ML for BB research aims to approximate (with ML) the signal
 with some learned estimate

Preliminary experiments show that can actually be a fairly noisy signal (i.e., with

significant variance from)

We propose the estimation of a signal that better approximates , e.g., we can get

realizations of the signals from previous solves using reliability branching

θgap
̂θgap

θgap

θ

θ
θreliability

RECAP, SO FAR

Most of the successful ML for BB research aims to approximate (with ML) the signal
 with some learned estimate

Preliminary experiments show that can actually be a fairly noisy signal (i.e., with

significant variance from)

We propose the estimation of a signal that better approximates , e.g., we can get

realizations of the signals from previous solves using reliability branching

θgap
̂θgap

θgap

θ

θ
θreliability

. . .≤ v*1

x1 = 0

x2 = 0 x2 = 1

x1 = 1

x3 = 0 x3 = 1

≤ v*1 ≤ v*1

≤ v*1

x1 = 0

x2 = 0 x2 = 1

x1 = 1

≤ v*N

x3 = 0 x3 = 1

≤ v*N ≤ v*N ≤ v*N

RECAP, SO FAR

Most of the successful ML for BB research aims to approximate (with ML) the signal
 with some learned estimate

Preliminary experiments show that can actually be a fairly noisy signal (i.e., with

significant variance from)

We propose the estimation of a signal that better approximates , e.g., we can get

realizations of the signals from previous solves using reliability branching

θgap
̂θgap

θgap

θ

θ
θreliability

≤ v*1

x1 = 0

x2 = 0 x2 = 1

x1 = 1

x3 = 0 x3 = 1

≤ v*1 ≤ v*1

≤ v*1

x1 = 0

x2 = 0 x2 = 1

x1 = 1

≤ v*N

x3 = 0 x3 = 1

≤ v*N ≤ v*N ≤ v*N

. . .

(Φ(S1, v*1) θrule(S1, v*1)) (Φ(SN, v*N) θrule(SN, v*N))

RECAP, SO FAR

ESTIMATING PROBLEM DIFFICULTY WITH REGRESSION

+

+

̂θ(S, v*) = βgap(f(v(S) − v*))

βfrac (fractionality of optimal LP solution)

βdual (dual information)

Packing

log θreliability

lo
g

̂ θ

Stable Set

log θreliability

lo
g

̂ θ

+

+

̂θ(S, v*) = βgap(f(v(S) − v*))

βfrac (fractionality of optimal LP solution)

βgraph (variable-constraint interaction)

geomean +/- geostd

37.13 +/- 1.92

29.48 +/- 1.73

|𝒯strong |

|𝒯 ̂θ |

% won

3%

96%

|𝒯strong |

|𝒯 ̂θ |

geomean +/- geostd

18.44 +/- 2.08

17.82 +/- 2.21

|𝒯strong |

|𝒯 ̂θ |

% won

32%

51%

|𝒯strong |

|𝒯 ̂θ |

BRANCHING ACCORDING TO ESTIMATES

Packing

log θreliability

lo
g

̂ θ

Stable Set

log θreliability

lo
g

̂ θ

geomean +/- geostd

37.13 +/- 1.92

29.48 +/- 1.73

|𝒯strong |

|𝒯 ̂θ |

% won

3%

96%

|𝒯strong |

|𝒯 ̂θ |

geomean +/- geostd

18.44 +/- 2.08

17.82 +/- 2.21

|𝒯strong |

|𝒯 ̂θ |

% won

32%

51%

|𝒯strong |

|𝒯 ̂θ |

BRANCHING ACCORDING TO ESTIMATES

Packing

log θreliability

lo
g

̂ θ

Stable Set

log θreliability

lo
g

̂ θ

QUESTIONS?

