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How can we do time-efficient and informed branching at each node? 
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How can we do time-efficient and informed branching at each node? 

A compromise—Reliability Branching: do strong branching early in the tree, until we 
have “enough information” about how each variable affects the objective; use this 
information through the rest of the tree 

A recent insight—Machine learning! 

Existing literature on ML to branch: how to use strong branching as an expert to imitate 
(The idea: obtain a fast approximation of strong branching scores/relative strong 
branching ranking) 

But… is strong branching the expert we should be imitating? 
Next, we give a framework through which we can think about this question
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This suggests branching on  
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Question 1: How does the quality of the estimate affect the size of the resulting 

tree? If   will we get a near-minimum-size tree?̂θ(S, v*) ≈ θ(S, v*)

Question 2: How can we get a good estimate  Not clear since obtaining 

samples with true supervised labels  is not computationally viable
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θ(S, v*)
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Let   be estimates such that  and   with 

. Then, .
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Theorem (D.) 
Let    be such that  , where , for all possible 
subproblems , and let  be the BB tree certifying bound  for the integer 
program  that branches according to . Then, .

̂θ 𝔼 [ϵ ̂θ(S, v*)] = α θ(S, v*) α ∈ [0,1]
S 𝒯 ̂θ(P, v*) v*

P ̂θ 𝔼 [ |𝒯 ̂θ(P, v*) |] = (1 + α)n θ(P, v*)
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  where  is any positive monotone function 

We propose two other signals: 
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θgap(S, v*) = f(v(S) − v*) f

θmostinf(S, v*) = f( |𝒯mostinf(S, v*) | )

θsb(S, v*) = f( |𝒯sb(S, v*) | )

IMPERFECT, BUT GOOD SIGNALS

Disclaimer: This data comes from random 
multi-dimensional knapsack problems, where 
strong branching is known to struggle
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The theory tells us BB trees branching according to these stronger signals should 
produce smaller trees than those produced by strong branching 

e.g., branching according to  : 

At subproblem , branch on the variable  

θmostinf

S arg min
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Indeed, we see that the BB trees branching according to these stronger signals are 
significantly smaller than those produced by strong branching 

IMPERFECT, BUT GOOD SIGNALS

geomean +/- geostd

37.44 +/- 1.91

28.83 +/- 1.74

27.68 +/- 1.71

|𝒯strong |

|𝒯θmostinf
|

|𝒯θsb
|

RELATIVE RANKING — FREQUENCY

𝒯strong 𝒯θmostinf
𝒯θsb



BB trees branching according to these stronger signals are significantly smaller than 
those produced by strong branching even when strong branching is excellent 

A MODERATE STRESS TEST

geomean +/- geostd

135.69 +/- 2.69

18.39 +/- 2.08

21.25 +/- 2.25

14.14 +/- 1.99

|𝒯mostinf |

|𝒯strong |

|𝒯θmostinf
|

|𝒯θreliability
|

RELATIVE RANKING — FREQUENCY

𝒯mostinf 𝒯strong

𝒯θmostinf
𝒯θreliability

Data:  

Randomly generated max stable 

set problems on Albert-Barabasi 

graphs (100 nodes, affinity=8) 

Clique cover relaxation
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ESTIMATING PROBLEM DIFFICULTY WITH REGRESSION
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̂θ(S, v*) = βgap( f(v(S) − v*))

βfrac (fractionality of optimal LP solution)

βdual (dual information)

Packing
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+  

+ 

̂θ(S, v*) = βgap( f(v(S) − v*))

βfrac (fractionality of optimal LP solution)

βgraph (variable-constraint interaction)
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QUESTIONS?


